
MILA Docs Documentation
Release latest

Jun 16, 2021

CONTENTS

1 Purpose of this documentation 3
1.1 Intended audience . 3
1.2 Contributing . 3

2 General Cluster theory 7
2.1 What is a computer Cluster ? . 7
2.2 Parts of a computing cluster . 7
2.3 UNIX . 9
2.4 The batch scheduler . 9
2.5 Processing data . 10
2.6 Software dependency management and associated challenges . 10

3 Mila research computing infrastructure information and policies 13
3.1 Roles and authorisations . 13
3.2 Overview of available computing resources at Mila . 13
3.3 Node profile description . 13
3.4 Data Sharing Policies . 14
3.5 Monitoring . 15
3.6 Storage . 18

4 1 Users Guide 21
4.1 1.1 Welcome to the machine; Logging in to the cluster . 21
4.2 1.2 Running your code . 22
4.3 1.3 Portability concerns and solutions . 27
4.4 1.4 Using containers . 40
4.5 1.5 Contributing datasets . 42
4.6 1.6 Notebooks . 44
4.7 1.7 Advanced SLURM usage and Multiple GPU jobs . 44
4.8 1.8 Frequently asked questions (FAQs) . 48

5 AI tooling and methodology handbook 51

6 Computational resources outside of Mila 53
6.1 Compute Canada Clusters . 53

7 Audio and video resources at Mila 59

8 Who, what, where is IDT 61

i

ii

MILA Docs Documentation, Release latest

Welcome to Mila’s technical documentation. See contents below.

CONTENTS 1

MILA Docs Documentation, Release latest

2 CONTENTS

CHAPTER

ONE

PURPOSE OF THIS DOCUMENTATION

This documentation aims to cover the information required to run scientific and data-intensive computing tasks at Mila
and the available resources for its members.

It also aims to be an outlet for sharing know-how, tips and tricks and examples from the IDT team to the Mila researcher
community.

1.1 Intended audience

This documentation is mainly intended for Mila researchers having access to the Mila cluster. This access is determined
by your researcher status. See Roles and authorisations for more information. The core of the information with this
purpose can be found in the following section : Mila research computing infrastructure information and policies.

However, we also aim to provide more general information which can be useful outside the scope of using the Mila
cluster. For instance, more general theory on computational considerations and such. In this perspective, we hope the
documentation can be of use for all of Mila members.

1.2 Contributing

See the following file for contribution guidelines :

Contributing to the Mila Docs

Thank you for your interest into making a better documentation for all at Mila. Here are␣
→˓some gidelines to help bring your contribbutions to life.

What could be included

* Mila cluster usage
* Compute Canada cluster usage
* Job management tips / tricks
* Research good practices
* Software development good practices
* Useful tools

Issues / Pull Requests

Issues

(continues on next page)

3

MILA Docs Documentation, Release latest

(continued from previous page)

Issues can be used to report any error in the documentation, missing or unclear sections,
→˓ broken tools or other suggestions to improve the overall documentation.

Pull Requests

PRs are welcome! Reference the related issues like this:

```
Resolves: #123
See also: #456, #789
```

You can attempt to build the docs yourself to see if the formating is right:

```console
python3 -m pip install -r docs/requirements.txt
sphinx-build -b html docs/ docs/_build/
```

This will produce the html version of the documentation which you can navigate by␣
→˓opening `docs/_build/index.html`.

If you have any touble building the docs, don't hesitate to open an issue to request␣
→˓help or simply provide the content you would like to add in markdown if that is␣
→˓simpler for you.

Sphinx / reStructuredText (reST)

The markup language used for the Mila Docs is [reStructuredText](http://docutils.
→˓sourceforge.net/rst.html) and we follow the [Python’s Style Guide for␣
→˓documenting](https://docs.python.org/devguide/documenting.html#style-guide).

Here are some of reST syntax useful to know (more can be found in [Sphinx's reST␣
→˓Primer](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html)):

Inline markup

* one asterisk: `*text*` for emphasis (italics),
* two asterisks: `**text**` for strong emphasis (boldface), and
* backquotes: ` ``text`` ` for code samples, and
* external links: `` `Link text <http://target>`_ ``.

Lists

```reST
* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

(continues on next page)

4 Chapter 1. Purpose of this documentation



MILA Docs Documentation, Release latest

(continued from previous page)

```

Sections

```reST
=================
This is a heading
=================
```

There are no heading levels assigned to certain characters as the structure is␣
→˓determined from the succession of headings. However, the Python documentation is␣
→˓suggesting the following convention:

* `#` with overline, for parts
* `*` with overline, for chapters
* `=`, for sections
* `-`, for subsections
* `^`, for subsubsections
* `"`, for paragraphs

Note box

```reST
.. note::

This is a long
long long note

```

1.2. Contributing 5

MILA Docs Documentation, Release latest

6 Chapter 1. Purpose of this documentation

CHAPTER

TWO

GENERAL CLUSTER THEORY

2.1 What is a computer Cluster ?

A computer cluster is a set of loosely or tightly connected computers that work together so that, in many
respects, they can be viewed as a single system.

Wikipedia

2.2 Parts of a computing cluster

In order to provide high performance computation capabilities, clusters can combine hundreds to thousands of com-
puters, called nodes, which are all inter-connected with a high-performance communication network. Most nodes are
designed for high-performance computations, but clusters can also use specialized nodes to offer parallel file systems,
databases, login nodes and even the cluster scheduling functionality as pictured in the image below.

7

https://en.wikipedia.org/wiki/Computer_cluster

MILA Docs Documentation, Release latest

We will overview the different types of nodes which you can encounter on a typical cluster.

2.2.1 The Login Nodes

To execute computing processes on a cluster, you must first connect to a cluster and this is accomplished through a
login node. These so-called login nodes are the entry point to most clusters.

Another entry point to some clusters such as the Mila cluster is the JupyterHub WEB interface, but we’ll read about
that later. For now let’s return to the subject of this section; Login nodes. To connect to these, you would typically use
a remote shell connection. The most usual tool to do so is SSH. You’ll hear and read a lot about this tool. Imagine it
as a very long (and somewhat magical) extension cord which connects the computer you are using now, such as your
laptop, to a remote computer’s terminal shell. You might already know what a terminal shell is if you ever used the
command line.

8 Chapter 2. General Cluster theory

MILA Docs Documentation, Release latest

2.2.2 The Compute Nodes

In the field of artificial intelligence, you will usually be on the hunt for GPUs. In most clusters, the compute nodes are
the ones with GPU capacity.

While there is a general paradigm to tend towards a homogeneous configuration for nodes, this is not always possible
in the field of artificial intelligence as the hardware evolve rapidly as is being complemented by new hardware and so
on. Hence, you will often read about computational node classes. Some of which might have different GPU models or
even no GPU at all. It is important to keep this in mind as you’ll have to be aware of which nodes you are working on.
More on that later.

2.2.3 The Storage nodes

Some computers on a cluster will have one function only which is to serve files. While the name of these computers
might matter to some, as a user, you’ll only be concerned about the path to the data. More on that in the Processing
data section.

2.2.4 Different nodes for different uses

It is important to note here the difference in intended uses between the compute nodes and the login nodes. While the
Compute Nodes are meant for heavy computation, the Login Nodes are not.

The login nodes however are used by everyone who uses the cluster and care must be taken not to overburden these
nodes. Consequently, only very short and light processes should be run on these otherwise the cluster may become
inaccessible. In other words, please refrain from executing long or compute intensive processes on login nodes because
it affects all other users. In some cases, you will also find that doing so might get you into trouble.

2.3 UNIX

All clusters typically run on GNU/Linux distributions. Hence a minimum knowledge of GNU/Linux and BASH is
usually required to use them. See the following tutorial for a rough guide on getting started with Linux.

2.4 The batch scheduler

Once connected to a login node, presumably with SSH, you can issue a job execution request to what is called the job
scheduler. The job scheduler used at Mila and Compute Canada clusters is called SLURM (slurm). The job scheduler’s
main role is to find a place to run your program in what is simply called : a job. This “place” is in fact one of many
computers synchronised to the scheduler which are called : Compute Nodes.

In fact it’s a bit trickier than that, but we’ll stay at this abstraction level for now.

2.3. UNIX 9

https://docs.computecanada.ca/wiki/Linux_introduction

MILA Docs Documentation, Release latest

2.4.1 Slurm

Resource sharing on a supercomputer/cluster is orchestrated by a resource manage/job scheduler. Users submit jobs,
which are scheduled and allocated resources (CPU time, memory, GPUs, etc.) by the resource manager, if the resources
are available the job can start otherwise it will be placed in queue.

On a cluster, users don’t have direct access to the compute nodes but instead connect to a login node to pass the
commands they would like to execute in a script for the workload manager to execute.

Mila as well as Compute Canada use the workload manager Slurm to schedule and allocate resources on their infras-
tructure.

Slurm client commands are available on the login nodes for you to submit jobs to the main controller and add your job
to the queue. Jobs are of 2 types: batch jobs and interactive jobs.

For practical examples of SLURM commands on the Mila cluster, see 1.2 Running your code.

2.5 Processing data

Clusters have different types of file systems to support different data storage use cases. We differentiate them by name.
You’ll hear or read about file systems such as “home”, “scratch” or “project” and so on.

Most of these file systems are are provided in a way which is globally available to all nodes in the cluster. Software or
data required by jobs can be accessed from any node on the cluster. (See Mila or CC for more information on available
file systems)

Different file systems have different performance levels. For instance, backed up file-systems (such as $PROJECT)
provide more space and can handle large files but cannot sustain highly parallel accesses typically required for high
speed model training.

Each compute node has local file systems (of which $SLURM_TMPDIR) that are usually more efficient but any data
remaining on these will be erased at the end of the job execution for the next job to come along.

2.6 Software dependency management and associated challenges

This section aims to raise awareness to problems one can encounter when trying to run a software on different computers
and how this is dealt with on typical computation clusters.

2.6.1 Python Virtual environments

TODO

2.6.2 Cluster software modules

Both Mila and Compute Canada clusters provides various software through the module command. Modules are small
files which modify your environment variables to register the correct location of the software you wish to use. To learn
practical examples of module uses, see 1.3.3.1 The module command.

10 Chapter 2. General Cluster theory

https://slurm.schedmd.com/documentation.html

MILA Docs Documentation, Release latest

2.6.3 Containers

Containers are a special form of isolation of software and it’s dependencies. It does not only create a separate file system,
but can also create a separate network and execution environment. All software you have used for your experiments is
packaged inside one file. You simply copy the image of the container you built on every environment without the need
to install anything.

2.6. Software dependency management and associated challenges 11

MILA Docs Documentation, Release latest

12 Chapter 2. General Cluster theory

CHAPTER

THREE

MILA RESEARCH COMPUTING INFRASTRUCTURE INFORMATION
AND POLICIES

This section seeks to provide factual information and policies on the Mila cluster computing environments.

3.1 Roles and authorisations

There are mainly two types of researchers statuses at Mila :

1. Core researchers

2. Affiliated researchers

This is determined by Mila policy. Core researchers have access to the Mila computing cluster. See your supervisor’s
Mila status to know what is your own status.

3.2 Overview of available computing resources at Mila

The Mila cluster is to be used for regular development and relatively small number of jobs (< 5). It is an heterogeneous
cluster. It uses SLURM to schedule jobs.

3.3 Node profile description

12GPU Arch and Memory

Model # Model #
kepler[2-3] k80 8 16 2 4 2 256 3.6 x86_64 tesla,12GB
kepler4 m40 4 16 2 4 2 256 3.6 x86_64 maxwell,24GB

kepler5 v100 2 m40 1 16 2 4 2 256 3.6 x86_64 volta,12GB
mila01 v100 8 80 2 20 2 512 7 x86_64 tesla,16GB
mila02 v100 8 80 2 20 2 512 7 x86_64 tesla,32GB
mila03 v100 8 80 2 20 2 512 7 x86_64 tesla,32GB

power9[1-2] v100 4 128 2 16 4 586 0.88 power9 tesla,nvlink,16gb
rtx[6,9] titanrtx 2 20 1 10 2 128 3.6 x86_64 turing,24gb

rtx[1-5,7-8] titanrtx 2 20 1 10 2 128 0.93 x86_64 turing,24gb
cn-a[01-11] rtx8000 8 80 2 20 2 380 3.6 x86_64 turing,48gb

cn-b[01-05] v100 8 80 2 20 2 380 3.6 x86_64 tesla,nvlink,32gb
cn-c[01-40] rtx8000 8 64 2 32 1 386 3 x86_64 turing,48gb

cn-d[01-02] A100 8 256 8 16 2 1032 1.4 x86_64 ampere,40gb

13

MILA Docs Documentation, Release latest

3.3. Node profile description

3.3.1 Special Nodes and outliers

Power9

Power9 servers are using a different processor instruction set than Intel and AMD (x86_64). As such you need to setup
your environment again for those nodes specifically.

• Power9 Machines have 128 threads. (2 processors / 16 cores / 4 way SMT)

• 4 x V100 SMX2 (16 GB) with NVLink

• In a Power9 machine GPUs and CPUs communicate with each other using NVLink instead of PCIe.

This allow them to communicate quickly between each other. More on LMS

Power9 have the same software stack as the regular nodes and each software should be included to deploy your envi-
ronment as on a regular node.

AMD

Warning: As of August 20 the GPUs had to return back to AMD. Mila will get more samples. You can join the
amd slack channels to get the latest information

Mila has a few node equipped with MI50 GPUs.

$ srun --gres=gpu -c 8 --reservation=AMD --pty bash

first time setup of AMD stack
$ conda create -n rocm python=3.6
$ conda activate rocm

$ pip install tensorflow-rocm
$ pip install /wheels/pytorch/torch-1.1.0a0+d8b9d32-cp36-cp36m-linux_x86_64.whl

3.4 Data Sharing Policies

/miniscratch supports ACL to allows collaborative work on rapidly changing data, i.g. work in process datasets, model
checkpoints, etc. . .

/network/projects aims to offer a collaborative space for long-term projects. Data that should be kept for a longer period
then 90 days can be stored in that location but first a request to Mila’s helpdesk has to be made.

14 Chapter 3. Mila research computing infrastructure information and policies

https://en.wikipedia.org/wiki/POWER9
https://developer.ibm.com/linuxonpower/2019/05/17/performance-results-with-tensorflow-large-model-support-v2/
https://mila-umontreal.slack.com/archives/CKV5YKEP6/p1561471261000500
https://www.amd.com/en/products/professional-graphics/instinct-mi50
Information.html#storage
Information.html#storage
https://it-support.mila.quebec

MILA Docs Documentation, Release latest

3.5 Monitoring

Every compute node on the Mila cluster has a monitoring daemon allowing you to check the resource usage of your
model and identify bottlenecks. You can access the monitoring web page by typing in your browser: <node>.server.
mila.quebec:19999.

For example, if I have a job running on eos1 I can type eos1.server.mila.quebec:19999 and the page below
should appear.

3.5. Monitoring 15

MILA Docs Documentation, Release latest

3.5.1 Notable Sections

You should focus your attention on the metrics below

• CPU

– iowait (pink line): High values means your model is waiting on IO a lot (disk or network)

• RAM

– Make sure you are only allocating enough to make your code run and not more otherwise you are wasting
resources.

• NV

– Usage of each GPU

– You should make sure you use the GPU to its fullest

∗ Select the biggest batch size if possible

∗ Spawn multiple experiments

16 Chapter 3. Mila research computing infrastructure information and policies

MILA Docs Documentation, Release latest

• Users

– In some cases the machine might seem slow, it may be useful to check if other people are using the machine
as well

3.5. Monitoring 17

MILA Docs Documentation, Release latest

3.6 Storage

Path Performance Usage Quota
(Space/Files)

Auto-cleanup

$HOME or /
home/mila/
<u>/<username>/

Low
• Personal user

space
• Specific li-

braries, code,
binaries

200G/1000K

/network/
projects/
<groupname>/

Fair
• Shared space

to facilitate
collabora-
tion between
researchers

• Long-term
project stor-
age

200G/1000K

/network/data1/ High
• Raw datasets

(read only)

/network/
datasets/

High
• Curated raw

datasets (read
only)

/miniscratch/ High
• Temporary

job results
• Processed

datasets
• Optimized for

small Files
• Supports

ACL to help
share the data
with others

90 days

$SLURM_TMPDIR Highest
• High speed

disk for tem-
porary job
results

4T/- at job end

• $HOME is appropriate for codes and libraries which are small and read once, as well as the experimental results
that would be needed at a later time (e.g. the weights of a network referenced in a paper).

• projects can be used for collaborative projects. It aims to ease the sharing of data between users working on a
long-term project. It’s possible to request a bigger quota if the project requires it.

• datasets contains curated datasets to the benefit of the Mila community. To request the addition of a dataset or

18 Chapter 3. Mila research computing infrastructure information and policies

MILA Docs Documentation, Release latest

a preprocessed dataset you think could benefit the research of others, you can fill this form.

• data1 should only contain compressed datasets. Now deprecated and replaced by the datasets space.

• miniscratch can be used to store processed datasets, work in progress datasets or temporary job results. Its
blocksize is optimized for small files which minimizes the performance hit of working on extracted datasets. It
supports ACL which can be used to share data between users. This space is cleared weekly and files older then
90 days will be deleted.

• $SLURM_TMPDIR points to the local disk of the node on which a job is running. It should be used to copy the
data on the node at the beginning of the job and write intermediate checkpoints. This folder is cleared after each
job.

Note: Auto-cleanup is applied on files not read or modified during the specified period

Warning: Currently there are no backup system in the lab. Storage local to personal computers, Google Drive
and other related solutions should be used to backup important data

3.6. Storage 19

https://forms.gle/vDVwD2rZBmYHENgZA

MILA Docs Documentation, Release latest

20 Chapter 3. Mila research computing infrastructure information and policies

CHAPTER

FOUR

1 USERS GUIDE

or IDT’s list of opinionated howtos.

This section seeks to provide users of the Mila infrastructure with practical knowledge, tips and tricks and example
commands.

4.1 1.1 Welcome to the machine; Logging in to the cluster

To access the Mila Cluster clusters, you will need an account. Please contact Mila systems administrators if you don’t
have it already. Our IT support service is available here: https://it-support.mila.quebec/

4.1.1 1.1.1 SSH Login

You can access the Mila cluster via ssh:

$ ssh <user>@login.server.mila.quebec -p 2222

Four login nodes are available and accessible behind a Load-Balancer. At each connection, you will be redirected to
the least loaded login-node. Each login node can be directly accessed via: login-X.login.server.mila.quebec
on port 2222.

The login nodes support the following authentication mechanisms: publickey,keyboard-interactive. If you
would like to set an entry in your .ssh/config file, please use the following recommendation:

Host HOSTALIAS
User YOUR-USERNAME
Hostname login.server.mila.quebec
PreferredAuthentications publickey,keyboard-interactive
Port 2222
ServerAliveInterval 120
ServerAliveCountMax 5

The RSA, DSA and ECDSA fingerprints for Mila’s login nodes are:

SHA256:baEGIa311fhnxBWsIZJ/zYhq2WfCttwyHRKzAb8zlp8 (ECDSA)
SHA256:XvukABPjV75guEgJX1rNxlDlaEg+IqQzUnPiGJ4VRMM (DSA)
SHA256:Xr0/JqV/+5DNguPfiN5hb8rSG+nBAcfVCJoSyrR0W0o (RSA)
SHA256:gfXZzaPiaYHcrPqzHvBi6v+BWRS/lXOS/zAjOKeoBJg (ED25519)

21

https://it-support.mila.quebec/

MILA Docs Documentation, Release latest

4.2 1.2 Running your code

4.2.1 1.2.1 SLURM commands guide

1.2.1.1 Basic Usage

The SLURM documentation provides extensive information on the available commands to query the cluster status or
submit jobs.

Below are some basic examples of how to use SLURM.

1.2.1.2 Submitting jobs

1.2.1.2.1 Batch job

In order to submit a batch job, you have to create a script containing the main command(s) you would like to execute
on the allocated resources/nodes.

1 #!/bin/bash
2 #SBATCH --job-name=test
3 #SBATCH --output=job_output.txt
4 #SBATCH --error=job_error.txt
5 #SBATCH --ntasks=1
6 #SBATCH --time=10:00
7 #SBATCH --mem=100Gb
8

9 module load python/3.5
10 python my_script.py

Your job script is then submitted to SLURM with sbatch (ref.)

$ sbatch job_script
sbatch: Submitted batch job 4323674

The working directory of the job will be the one where your executed sbatch.

Tip: Slurm directives can be specified on the command line alongside sbatch or inside the job script with a line
starting with #SBATCH.

1.2.1.2.2 Interactive job

Workload managers usually run batch jobs to avoid having to watch its progression and let the scheduler run it as soon
as resources are available. If you want to get access to a shell while leveraging cluster resources, you can submit an
interactive jobs where the main executable is a shell with the srun/salloc (srun/salloc) commands

$ salloc

will start an interactive job on the first node available with the default resources set in SLURM (1 task/1 CPU). srun
accepts the same arguments as sbatch with the exception that the environment is not passed.

Tip: To pass your current environment to an interactive job, add --preserve-env to srun.

22 Chapter 4. 1 Users Guide

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/srun.html
https://slurm.schedmd.com/salloc.html

MILA Docs Documentation, Release latest

salloc can also be used and is mostly a wrapper around srun if provided without more info but it gives more flexibility
if for example you want to get an allocation on multiple nodes.

1.2.1.3 Job submission arguments

In order to accurately select the resources for your job, several arguments are available. The most important ones are:

Argument Description
-n, –ntasks=<number> The number of task in your script, usually =1
-c, –cpus-per-task=<ncpus> The number of cores for each task
-t, –time=<time> Time requested for your job
–mem=<size[units]> Memory requested for all your tasks
–gres=<list> Select generic resources such as GPUs for your job: --gres=gpu:GPU_MODEL

Tip: Always consider requesting the adequate amount of resources to improve the scheduling of your job (small jobs
always run first).

1.2.1.4 Checking job status

To display jobs currently in queue, use squeue and to get only your jobs type

$ squeue -u $USER
JOBID USER NAME ST START_TIME TIME NODES CPUS TRES_PER_NMIN_MEM NODELIST (REASON) COMMENT
133 my_username myjob R 2019-03-28T18:33 0:50 1 2 N/A 7000M c1-8g-tiny1 (None) (null)

1.2.1.5 Removing a job

To cancel your job simply use scancel

$ scancel 4323674

4.2.2 1.2.2 Partitioning

Since we don’t have many GPUs on the cluster, resources must be shared as fairly as possible. The --partition=/
-p flag of SLURM allows you to set the priority you need for a job. Each job assigned with a priority can preempt
jobs with a lower priority: unkillable > main > long. Once preempted, your job is killed without notice and
is automatically re-queued on the same partition until resources are available. (To leverage a different preemption
mechanism, see the Handling preemption)

Flag Max Resource Usage Max Time Note
–partition=unkillable 1 GPU, 6 CPUs, mem=32G 2 days
–partition=main 2 GPUs, 8 CPUs, mem=48G 2 days
–partition=long no limit of resources 7 days

For instance, to request an unkillable job with 1 GPU, 4 CPUs, 10G of RAM and 12h of computation do:

$ sbatch --gres=gpu:1 -c 4 --mem=10G -t 12:00:00 --partition=unkillable <job.sh>

You can also make it an interactive job using salloc:

4.2. 1.2 Running your code 23

MILA Docs Documentation, Release latest

$ salloc --gres=gpu:1 -c 4 --mem=10G -t 12:00:00 --partition=unkillable

The Mila cluster has many different types of nodes/GPUs. To request a specific type of node/GPU, you can add specific
feature requirements to your job submission command.

To access those special nodes you need to request them explicitly by adding the flag --constraint=<name>. The full
list of nodes in the Mila Cluster can be accessed Node profile description.

Example:

To request a Power9 machine

$ sbatch -c 4 --constraint=power9

To request a machine with 2 GPUs using NVLink, you can use

$ sbatch -c 4 --gres=gpu:2 --constraint=nvlink

Feature Particularities
x86_64 (Default) Regular nodes
Power9 Power9 CPUs (incompatible with x86_64 software)
12GB/16GB/24GB/32GB/48GB Request a specific amount of GPU memory
maxwell/pascal/volta/tesla/turing/kepler Request a specific GPU architecture
nvlink Machine with GPUs using the NVLink technology

Note: You don’t need to specify x86_64 when you add a constraint as it is added by default (nvlink ->
x86_64&nvlink)

1.2.2.1 Information on partitions/nodes

sinfo (ref.) provides most of the information about available nodes and partitions/queues to submit jobs to.

Partitions are a group of nodes usually sharing similar features. On a partition, some job limits can be applied which
will override those asked for a job (i.e. max time, max CPUs, etc. . .)

To display available partitions, simply use

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch up infinite 2 alloc node[1,3,5-9]
batch up infinite 6 idle node[10-15]
cpu up infinite 6 idle cpu_node[1-15]
gpu up infinite 6 idle gpu_node[1-15]

To display available nodes and their status, you can use

$ sinfo -N -l
NODELIST NODES PARTITION STATE CPUS MEMORY TMP_DISK WEIGHT FEATURES REASON
node[1,3,5-9] 2 batch allocated 2 246 16000 0 (null) (null)
node[2,4] 2 batch drain 2 246 16000 0 (null) (null)
node[10-15] 6 batch idle 2 246 16000 0 (null) (null)
...

and to get statistics on a job running or terminated, use sacct with some of the fields you want to display

$ sacct --format=User,JobID,Jobname,partition,state,time,start,end,elapsed,nnodes,ncpus,nodelist,workdir -u username
User JobID JobName Partition State Timelimit Start End Elapsed NNodes NCPUS NodeList WorkDir
--------- ------------ ---------- ---------- ---------- ---------- ------------------- ------------------- ---------- -------- ---------- --------------- --------------------

24 Chapter 4. 1 Users Guide

https://slurm.schedmd.com/sinfo.html

MILA Docs Documentation, Release latest

username 2398 run_extra+ azureComp+ RUNNING 130-05:00+ 2019-03-27T18:33:43 Unknown 1-01:07:54 1 16 node9 /home/mila/username+
username 2399 run_extra+ azureComp+ RUNNING 130-05:00+ 2019-03-26T08:51:38 Unknown 2-10:49:59 1 16 node9 /home/mila/username+

or to get the list of all your previous jobs, use the --start=#### flag

$ sacct -u my_username --start=20190101

scontrol (ref.) can be used to provide specific information on a job (currently running or recently terminated)

$ scontrol show job 43123
JobId=43123 JobName=python_script.py
UserId=my_username(1500000111) GroupId=student(1500000000) MCS_label=N/A
Priority=645895 Nice=0 Account=my_username QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=3 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=2-10:41:57 TimeLimit=130-05:00:00 TimeMin=N/A
SubmitTime=2019-03-26T08:47:17 EligibleTime=2019-03-26T08:49:18
AccrueTime=2019-03-26T08:49:18
StartTime=2019-03-26T08:51:38 EndTime=2019-08-03T13:51:38 Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=0
LastSchedEval=2019-03-26T08:49:18
Partition=slurm_partition AllocNode:Sid=login-node-1:14586
ReqNodeList=(null) ExcNodeList=(null)
NodeList=node2
BatchHost=node2
NumNodes=1 NumCPUs=16 NumTasks=1 CPUs/Task=16 ReqB:S:C:T=0:0:*:*
TRES=cpu=16,mem=32000M,node=1,billing=3
Socks/Node=* NtasksPerN:B:S:C=1:0:*:* CoreSpec=*
MinCPUsNode=16 MinMemoryNode=32000M MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
WorkDir=/home/mila/my_username
StdErr=/home/mila/my_username/slurm-43123.out
StdIn=/dev/null
StdOut=/home/mila/my_username/slurm-43123.out
Power=

or more info on a node and its resources

$ scontrol show node node9
NodeName=node9 Arch=x86_64 CoresPerSocket=4
CPUAlloc=16 CPUTot=16 CPULoad=1.38
AvailableFeatures=(null)
ActiveFeatures=(null)
Gres=(null)
NodeAddr=10.252.232.4 NodeHostName=mila20684000000 Port=0 Version=18.08
OS=Linux 4.15.0-1036 #38-Ubuntu SMP Fri Dec 7 02:47:47 UTC 2018
RealMemory=32000 AllocMem=32000 FreeMem=23262 Sockets=2 Boards=1
State=ALLOCATED+CLOUD ThreadsPerCore=2 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
Partitions=slurm_partition
BootTime=2019-03-26T08:50:01 SlurmdStartTime=2019-03-26T08:51:15
CfgTRES=cpu=16,mem=32000M,billing=3
AllocTRES=cpu=16,mem=32000M
CapWatts=n/a
CurrentWatts=0 LowestJoules=0 ConsumedJoules=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

4.2. 1.2 Running your code 25

https://slurm.schedmd.com/scontrol.html

MILA Docs Documentation, Release latest

4.2.3 1.2.3 Useful Commands

Command Description
salloc Get an interactive job and give you a shell. (ssh like) CPU only
salloc –gres=gpu -c 2 –mem=12000 Get an interactive job with one GPU, 2 CPUs and 12000 MB

RAM
sbatch start a batch job (same options as salloc)
sattach –pty <jobid>.0 Re-attach a dropped interactive job
sinfo status of all nodes
sinfo -Ogres:27,nodelist,features -
tidle,mix,alloc

List GPU type and FEATURES that you can request

savail (Custom) List available gpu
scancel <jobid> Cancel a job
squeue summary status of all active jobs
squeue -u $USER summary status of all YOUR active jobs
squeue -j <jobid> summary status of a specific job
squeue -Ojobid,name,username,partition,
state,timeused,nodelist,gres,tres

status of all jobs including requested resources (see the SLURM
squeue doc for all output options)

scontrol show job <jobid> Detailed status of a running job
sacct -j <job_id> -o NodeList Get the node where a finished job ran
sacct -u $USER -S <start_time> -E <stop_time> Find info about old jobs
sacct -oJobID,JobName,User,Partition,Node,State List of current and recent jobs

4.2.4 1.2.4 Special GPU requirements

Specific GPU architecture and memory can be easily requested through the --gres flag by using either

• --gres=gpu:architecture:memory:number

• --gres=gpu:architecture:number

• --gres=gpu:memory:number

• --gres=gpu:model:number

Example:

To request a Tesla GPU with at least 16GB of memory use

$ sbatch -c 4 --gres=gpu:tesla:16gb:1

The full list of GPU and their features can be accessed here.

4.2.5 1.2.5 CPU-only jobs

Since the priority is given to the usage of GPUs, CPU-only jobs have a low priority and can only consume 4 cpus
maximum per node. The partition for CPU-only jobs is named cpu_jobs and you can request it with -p cpu_jobs
or if you don’t specify any GPU, you will be automatically rerouted to this partition.

26 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

4.2.6 1.2.6 Example script

Here is a sbatch script that follows good practices on the Mila cluster:

1 #!/bin/bash
2 #SBATCH --partition=unkillable # Ask for unkillable job
3 #SBATCH --cpus-per-task=2 # Ask for 2 CPUs
4 #SBATCH --gres=gpu:1 # Ask for 1 GPU
5 #SBATCH --mem=10G # Ask for 10 GB of RAM
6 #SBATCH --time=3:00:00 # The job will run for 3 hours
7 #SBATCH -o /network/tmp1/<user>/slurm-%j.out # Write the log on tmp1
8

9 # 1. Load the required modules
10 module --quiet load anaconda/3
11

12 # 2. Load your environment
13 conda activate <env_name>
14

15 # 3. Copy your dataset on the compute node
16 cp /network/data/<dataset> $SLURM_TMPDIR
17

18 # 4. Launch your job, tell it to save the model in $SLURM_TMPDIR
19 # and look for the dataset into $SLURM_TMPDIR
20 python main.py --path $SLURM_TMPDIR --data_path $SLURM_TMPDIR
21

22 # 5. Copy whatever you want to save on $SCRATCH
23 cp $SLURM_TMPDIR/<to_save> /network/tmp1/<user>/

4.3 1.3 Portability concerns and solutions

4.3.1 1.3.1 Creating a list of your software’s dependencies

TODO

4.3.2 1.3.2 Managing your envs

1.3.2.1 Pip/Virtualenv

Pip is the preferred package manager for Python and each cluster provides several Python versions through the associ-
ated module which comes with pip. In order to install new packages, you will first have to create a personal space for
them to be stored. The preferred solution (as it is the preferred solution on Compute Canada clusters) is to use virtual
environments.

First, load the python module you want to use:

$ module load python/3.6

Then, create a virtual environment in your home directory:

$ virtualenv $HOME/<env>

where <env> is the name of your environment. Finally, activate the environment:

$ source $HOME/<env>/bin/activate

4.3. 1.3 Portability concerns and solutions 27

https://virtualenv.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/

MILA Docs Documentation, Release latest

You can now install any python package you wish using the pip command, e.g. pytorch:

(<env>)$ pip install torch torchvision

or Tensorflow:

(<env>)$ pip install tensorflow-gpu

1.3.2.2 Conda

Another solution for Python is to use miniconda or anaconda which are also available through the module command:
(the use of conda is not recommended for Compute Canada Clusters due to the availability of custom-built packages
for pip)

$ module load miniconda/3
[=== Module miniconda/3 loaded ===]
To enable conda environment functions, first use:

$ conda-activate

Then like advised, if you want to enable conda activate/deactivate functions, start the following alias once

$ conda-activate

To create an environment (see here for details) do:

$ conda create -n <env> python=3.6

where <env> is the name of your environment. You can now activate it by doing:

$ conda activate <env>

You are now ready to install any python package you want in this environment. For instance, to install pytorch, you can
find the conda command of any version you want on pytorch’s website, e.g:

(<env>)$ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch

Don’t forget to clean the environment after each install:

(<env>)$ conda clean --all

4.3.3 1.3.3 Using Modules

Many software, such as Python and Conda, are already compiled and available on the cluster through the module
command and its sub-commands. In particular, if you with to use Python 3.7 you can simply do:

$ module load python/3.7

1.3.3.1 The module command

For a list of available modules, simply use:

$ module avail
--- Global Aliases ---

cuda/10.0 -> cudatoolkit/10.0 cuda/9.2 -> cudatoolkit/9.2 pytorch/1.4.1 -> python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.4.1 tensorflow/1.15 -> python/3.7/tensorflow/1.15
cuda/10.1 -> cudatoolkit/10.1 mujoco-py -> python/3.7/mujoco-py/2.0 pytorch/1.5.0 -> python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.5.0 tensorflow/2.2 -> python/3.7/tensorflow/2.2
cuda/10.2 -> cudatoolkit/10.2 mujoco-py/2.0 -> python/3.7/mujoco-py/2.0 pytorch/1.5.1 -> python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.5.1
cuda/11.0 -> cudatoolkit/11.0 pytorch -> python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.5.1 tensorflow -> python/3.7/tensorflow/2.2
cuda/9.0 -> cudatoolkit/9.0 pytorch/1.4.0 -> python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.4.0 tensorflow-cpu/1.15 -> python/3.7/tensorflow/1.15

28 Chapter 4. 1 Users Guide

https://pytorch.org/get-started/locally
https://www.tensorflow.org/install/gpu
https://docs.conda.io/en/latest/miniconda.html
https://docs.anaconda.com
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://pytorch.org/get-started/locally

MILA Docs Documentation, Release latest

--- /cvmfs/config.mila.quebec/modules/Core ---
Mila (S,L) anaconda/3 (D) go/1.13.5 miniconda/2 mujoco/1.50 python/2.7 python/3.6 python/3.8 singularity/3.0.3 singularity/3.2.1 singularity/3.5.3 (D)
anaconda/2 go/1.12.4 go/1.14 (D) miniconda/3 (D) mujoco/2.0 (D) python/3.5 python/3.7 (D) singularity/2.6.1 singularity/3.1.1 singularity/3.4.2

--- /cvmfs/config.mila.quebec/modules/Compiler ---
python/3.7/mujoco-py/2.0

--- /cvmfs/config.mila.quebec/modules/Cuda ---
cuda/10.0/cudnn/7.3 cuda/10.0/nccl/2.4 cuda/10.1/nccl/2.4 cuda/11.0/nccl/2.7 cuda/9.0/nccl/2.4 cudatoolkit/9.0 cudatoolkit/10.1 cudnn/7.6/cuda/10.0/tensorrt/7.0
cuda/10.0/cudnn/7.5 cuda/10.1/cudnn/7.5 cuda/10.2/cudnn/7.6 cuda/9.0/cudnn/7.3 cuda/9.2/cudnn/7.6 cudatoolkit/9.2 cudatoolkit/10.2 cudnn/7.6/cuda/10.1/tensorrt/7.0
cuda/10.0/cudnn/7.6 (D) cuda/10.1/cudnn/7.6 (D) cuda/10.2/nccl/2.7 cuda/9.0/cudnn/7.5 (D) cuda/9.2/nccl/2.4 cudatoolkit/10.0 cudatoolkit/11.0 (D) cudnn/7.6/cuda/9.0/tensorrt/7.0

--- /cvmfs/config.mila.quebec/modules/Pytorch --
python/3.7/cuda/10.1/cudnn/7.6/pytorch/1.4.1 python/3.7/cuda/10.1/cudnn/7.6/pytorch/1.5.1 (D) python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.5.0
python/3.7/cuda/10.1/cudnn/7.6/pytorch/1.5.0 python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.4.1 python/3.7/cuda/10.2/cudnn/7.6/pytorch/1.5.1 (D)

-- /cvmfs/config.mila.quebec/modules/Tensorflow --
python/3.7/tensorflow/1.15 python/3.7/tensorflow/2.0 python/3.7/tensorflow/2.2 (D)

Modules can be loaded using the load command:

$ module load <module>

To search for a module or a software, use the command spider:

$ module spider search_term

E.g.: by default, python2 will refer to the os-shipped installation of python2.7 and python3 to python3.6. If you
want to use python3.7 you can type:

$ module load python3.7

1.3.3.2 Available Software

Modules are divided in 5 main sections:

Section Description
Core Base interpreter and software (Python, go, etc. . .)
Compiler Interpreter-dependent software (see the note below)
Cuda Toolkits, cudnn and related libraries
Py-
torch/Tensorflow

Pytorch/TF built with a specific Cuda/Cudnn version for Mila’s GPUs (see the related para-
graph)

Note: Modules which are nested (../../..) usually depend on other software/module loaded alongside the main module.
No need to load the dependent software, the complex naming scheme allows an automatic detection of the dependent
module(s):

i.e.: Loading cudnn/7.6/cuda/9.0/tensorrt/7.0 will load cudnn/7.6 and cuda/9.0 alongside

python/3.X is a particular dependency which can be served through python/3.X or anaconda/3 and is not auto-
matically loaded to let the user pick his favorite flavor.

4.3. 1.3 Portability concerns and solutions 29

MILA Docs Documentation, Release latest

1.3.3.3 Default package location

Python by default uses the user site package first and packages provided by module last to not interfere with your
installation. If you want to skip packages installed in your site package (in your /home folder), you have to start Python
with the -s flag.

To check which package is loaded at import, you can print package.__file__ to get the full path of the package.

Example:

$ module load pytorch/1.5.0
$ python -c 'import torch;print(torch.__file__)'
/home/mila/my_home/.local/lib/python3.7/site-packages/torch/__init__.py <== package from your own site-package

Now with the -s flag:

$ module load pytorch/1.5.0
$ python -s -c 'import torch;print(torch.__file__)'
/cvmfs/ai.mila.quebec/apps/x86_64/debian/pytorch/python3.7-cuda10.1-cudnn7.6-v1.5.0/lib/python3.7/site-packages/torch/__init__.py'

4.3.4 1.3.4 On using containers

Another option for portable code might also be 1.4 Using containers.

One popular mechanism for containerisation on a computational cluster is called singularity. This is the recommended
approach for running containers on the Mila cluster.

Singularity is a software container system designed to facilitate portability and reproducibility of high performance
computing (HPC) workflows. It performs a function similar to docker, but with HPC in mind. It is compatible with
existing docker containers, and provides tools for building new containers from recipe files or ad-hoc commands.

Building a container is like creating a new environment except that containers are much more powerful since they are
self-contain systems. With singularity, there are two ways to build containers.

The first one is by yourself, it’s like when you got a new Linux laptop and you don’t really know what you need, if you
see that something is missing, you install it. Here you can get a vanilla container with Ubuntu called a sandbox, you
log in and you install each packages by yourself. This procedure can take time but will allow you to understand how
things work and what you need. This is recommended if you need to figure out how things will be compiled or if you
want to install packages on the fly. We’ll refer to this procedure as singularity sandboxes.

The second one way is more like you know what you want, so you write a list of everything you need, you sent it to
singularity and it will install everything for you. Those lists are called singularity recipes.

1.3.4.1 First way: Build and use a sandbox

You might ask yourself; On which machine should I build a container ?

First of all, you need to choose where you’ll build your container. This operation requires memory and high cpu
usage.

Warning: Do NOT build containers on any login nodes !

• (Recommended for beginner) If you need to use apt-get, you should build the container on your laptop with
sudo privileges. You’ll only need to install singularity on your laptop. Windows/Mac users can look there and
Ubuntu/Debian users can use directly:

$ sudo apt-get install singularity-container

30 Chapter 4. 1 Users Guide

https://www.sylabs.io/guides/3.0/user-guide/installation.html#install-on-windows-or-mac

MILA Docs Documentation, Release latest

• If you can’t install singularity on your laptop and you don’t need apt-get, you can reserve a cpu node on the
mila cluster to build your container.

In this case, in order to avoid too much I/O over the network, you should define the singularity cache locally:

$ export SINGULARITY_CACHEDIR=$SLURM_TMPDIR

• If you can’t install singularity on your laptop and you want to use apt-get, you can use singularity-hub to build
your containers and read Recipe_section.

1.3.4.1.1 Download containers from the web

Hopefully, you may not need to create containers from scratch as many have been already built for the most common
deep learning software. You can find most of them on dockerhub.

Tip: (Optional) You can also pull containers from nvidia cloud see nvidia

Go on dockerhub and select the container you want to pull.

For example, if you want to get the latest pytorch version with gpu support (Replace runtime by devel if you need the
full CUDA toolkit):

$ singularity pull docker://pytorch/pytorch:1.0.1-cuda10.0-cudnn7-runtime

or the latest tensorflow:

$ singularity pull docker://tensorflow/tensorflow:latest-gpu-py3

Currently the pulled image pytorch.simg or tensorflow.simg is read only meaning that you won’t be able to install
anything on it. Starting now, pytorch will be taken as example. If you use tensorflow, simply replace every pytorch
occurrences by tensorflow.

1.3.4.1.2 How to add or install stuff in a container

The first step is to transform your read only container pytorch-1.0.1-cuda10.0-cudnn7-runtime.simg in a
writable version that will allow you to add packages.

Warning: Depending of the version of singularity you are using, singularity will build a container with the
extension .simg or .sif. If you got .sif files, replace every occurences of .simg by .sif.

Tip: If you want to use apt-get you have to put sudo ahead of the following commands

This command will create a writable image in the folder pytorch.

$ singularity build --sandbox pytorch pytorch-1.0.1-cuda10.0-cudnn7-runtime.simg

Then you’ll need the following command to log inside the container.

$ singularity shell --writable -H $HOME:/home pytorch

Once you get into the container, you can use pip and install anything you need (Or with apt-get if you built the
container with sudo).

4.3. 1.3 Portability concerns and solutions 31

https://www.singularity-hub.org/
https://hub.docker.com/
https://hub.docker.com/

MILA Docs Documentation, Release latest

Warning: Singularity mount your home, so if you install things into the $HOME of your container, they will be
installed in your real $HOME !

You should install your stuff in /usr/local instead.

1.3.4.1.3 Creating useful directory

One of the benefit of containers is that you’ll be able to use them across different clusters. However for each cluster the
dataset and experiment folder location can be different. In order to be invariant to those locations, we will create some
useful mount points inside the container:

<Singularity_container>$ mkdir /dataset
<Singularity_container>$ mkdir /tmp_log
<Singularity_container>$ mkdir /final_log

From now, you won’t need to worry anymore when you write your code to specify where to pick up your dataset. Your
dataset will always be in /dataset independently of the cluster you are using.

1.3.4.1.4 Testing

If you have some code that you want to test before finalizing your container, you have two choices. You can either log
into your container and run python code inside it with

$ singularity shell --nv pytorch

or you can execute your command directly with

$ singularity exec --nv pytorch python YOUR_CODE.py

Tip: —nv allows the container to use gpus. You don’t need this if you don’t plan to use a gpu.

Warning: Don’t forget to clear the cache of the packages you installed in the containers.

1.3.4.1.5 Creating a new image from the sandbox

Once everything you need is installed inside the container, you need to convert it back to a read-only singularity image
with:

$ singularity build pytorch_final.simg pytorch

32 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

1.3.4.2 Second way: Use recipes

A singularity recipe is a file including specifics about installation software, environment variables, files to add, and
container metadata. It is a starting point for designing any custom container. Instead of pulling a container and install
your packages manually, you can specify in this file the packages you want and then build your container from this file.

Here is a toy example of a singularity recipe installing some stuff:

################# Header: Define the base system you want to use ################
Reference of the kind of base you want to use (e.g., docker, debootstrap, shub).
Bootstrap: docker
Select the docker image you want to use (Here we choose tensorflow)
From: tensorflow/tensorflow:latest-gpu-py3

################# Section: Defining the system #################################
Commands in the %post section are executed within the container.
%post

echo "Installing Tools with apt-get"
apt-get update
apt-get install -y cmake libcupti-dev libyaml-dev wget unzip
apt-get clean
echo "Installing things with pip"
pip install tqdm
echo "Creating mount points"
mkdir /dataset
mkdir /tmp_log
mkdir /final_log

Environment variables that should be sourced at runtime.
%environment

use bash as default shell
SHELL=/bin/bash
export SHELL

A recipe file contains two parts: the header and sections. In the header you specify which base system you want
to use, it can be any docker or singularity container. In sections, you can list the things you want to install in the
subsection post or list the environment’s variable you need to source at each runtime in the subsection environment.
For a more detailed description, please look at the singularity documentation.

In order to build a singularity container from a singularity recipe file, you should use:

$ sudo singularity build <NAME_CONTAINER> <YOUR_RECIPE_FILES>

Warning: You always need to use sudo when you build a container from a recipe.

4.3. 1.3 Portability concerns and solutions 33

https://www.sylabs.io/guides/2.6/user-guide/container_recipes.html#container-recipes

MILA Docs Documentation, Release latest

1.3.4.2.1 Build recipe on singularity hub

Singularity hub allows users to build containers from recipes directly on singularity-hub’s cloud meaning that you don’t
need anymore to build containers by yourself. You need to register on singularity-hub and link your singularity-hub
account to your github account, then

1) Create a new github repository.

2) Add a collection on singularity-hub and select the github repository your created.

3) Clone the github repository on your computer.

4) Write the singularity recipe and save it as a file nammed Singularity.

5) Git add Singularity, commit and push on the master branch.

At this point, robots from singularity-hub will build the container for you, you will be able to download your container
from the website or directly with:

$ singularity pull shub://<github_username>/<repository_name>

1.3.4.2.2 Example: Recipe with openai gym, mujoco and miniworld

Here is an example on how you can use singularity recipe to install complex environment as opanai gym, mujoco and
miniworld on a pytorch based container. In order to use mujoco, you’ll need to copy the key stored on the mila cluster
in /ai/apps/mujoco/license/mjkey.txt to your current directory.

#This is a dockerfile that sets up a full Gym install with test dependencies
Bootstrap: docker

Here we ll build our container upon the pytorch container
From: pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime

Now we'll copy the mjkey file located in the current directory inside the container's␣
→˓root
directory
%files

mjkey.txt

Then we put everything we need to install
%post

export PATH=$PATH:/opt/conda/bin
apt -y update && \
apt install -y keyboard-configuration && \
apt install -y \
python3-dev \
python-pyglet \
python3-opengl \
libhdf5-dev \
libjpeg-dev \
libboost-all-dev \
libsdl2-dev \
libosmesa6-dev \
patchelf \
ffmpeg \

(continues on next page)

34 Chapter 4. 1 Users Guide

https://www.singularity-hub.org/
https://www.singularity-hub.org/

MILA Docs Documentation, Release latest

(continued from previous page)

xvfb \
libhdf5-dev \
openjdk-8-jdk \
wget \
git \
unzip && \
apt clean && \
rm -rf /var/lib/apt/lists/*
pip install h5py

Download Gym and Mujoco
mkdir /Gym && cd /Gym
git clone https://github.com/openai/gym.git || true && \
mkdir /Gym/.mujoco && cd /Gym/.mujoco
wget https://www.roboti.us/download/mjpro150_linux.zip && \
unzip mjpro150_linux.zip && \
wget https://www.roboti.us/download/mujoco200_linux.zip && \
unzip mujoco200_linux.zip && \
mv mujoco200_linux mujoco200

Export global environment variables
export MUJOCO_PY_MJKEY_PATH=/Gym/.mujoco/mjkey.txt
export MUJOCO_PY_MUJOCO_PATH=/Gym/.mujoco/mujoco150/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mjpro150/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mujoco200/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/bin
cp /mjkey.txt /Gym/.mujoco/mjkey.txt
Install python dependencies
wget https://raw.githubusercontent.com/openai/mujoco-py/master/requirements.txt
pip install -r requirements.txt
Install Gym and Mujoco
cd /Gym/gym
pip install -e '.[all]'
Change permission to use mujoco_py as non sudoer user
chmod -R 777 /opt/conda/lib/python3.6/site-packages/mujoco_py/
pip install --upgrade minerl

Export global environment variables
%environment

export SHELL=/bin/sh
export MUJOCO_PY_MJKEY_PATH=/Gym/.mujoco/mjkey.txt
export MUJOCO_PY_MUJOCO_PATH=/Gym/.mujoco/mujoco150/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mjpro150/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mujoco200/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/bin
export PATH=/Gym/gym/.tox/py3/bin:$PATH

%runscript
exec /bin/sh "$@"

Here is the same recipe but written for TensorFlow.

4.3. 1.3 Portability concerns and solutions 35

MILA Docs Documentation, Release latest

#This is a dockerfile that sets up a full Gym install with test dependencies
Bootstrap: docker

Here we ll build our container upon the tensorflow container
From: tensorflow/tensorflow:latest-gpu-py3

Now we'll copy the mjkey file located in the current directory inside the container's␣
→˓root
directory
%files

mjkey.txt

Then we put everything we need to install
%post

apt -y update && \
apt install -y keyboard-configuration && \
apt install -y \
python3-setuptools \
python3-dev \
python-pyglet \
python3-opengl \
libjpeg-dev \
libboost-all-dev \
libsdl2-dev \
libosmesa6-dev \
patchelf \
ffmpeg \
xvfb \
wget \
git \
unzip && \
apt clean && \
rm -rf /var/lib/apt/lists/*

Download Gym and Mujoco
mkdir /Gym && cd /Gym
git clone https://github.com/openai/gym.git || true && \
mkdir /Gym/.mujoco && cd /Gym/.mujoco
wget https://www.roboti.us/download/mjpro150_linux.zip && \
unzip mjpro150_linux.zip && \
wget https://www.roboti.us/download/mujoco200_linux.zip && \
unzip mujoco200_linux.zip && \
mv mujoco200_linux mujoco200

Export global environment variables
export MUJOCO_PY_MJKEY_PATH=/Gym/.mujoco/mjkey.txt
export MUJOCO_PY_MUJOCO_PATH=/Gym/.mujoco/mujoco150/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mjpro150/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mujoco200/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/bin
cp /mjkey.txt /Gym/.mujoco/mjkey.txt

Install python dependencies
(continues on next page)

36 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

(continued from previous page)

wget https://raw.githubusercontent.com/openai/mujoco-py/master/requirements.txt
pip install -r requirements.txt
Install Gym and Mujoco
cd /Gym/gym
pip install -e '.[all]'
Change permission to use mujoco_py as non sudoer user
chmod -R 777 /usr/local/lib/python3.5/dist-packages/mujoco_py/

Then install miniworld
cd /usr/local/
git clone https://github.com/maximecb/gym-miniworld.git
cd gym-miniworld
pip install -e .

Export global environment variables
%environment

export SHELL=/bin/bash
export MUJOCO_PY_MJKEY_PATH=/Gym/.mujoco/mjkey.txt
export MUJOCO_PY_MUJOCO_PATH=/Gym/.mujoco/mujoco150/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mjpro150/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/Gym/.mujoco/mujoco200/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/bin
export PATH=/Gym/gym/.tox/py3/bin:$PATH

%runscript
exec /bin/bash "$@"

Keep in mind that those environment variables are sourced at runtime and not at build time. This is why, you should
also define them in the %post section since they are required to install mujuco.

1.3.4.3 Using containers on clusters

On every cluster with SLURM, dataset and intermediate results should go in $SLURM_TMPDIR while the final exper-
iments results should go in $SCRATCH. In order to use the container you built, you need to copy it on the cluster you
want to use.

Warning: You should always store your container in $SCRATCH !

Then reserve a node with srun/sbatch, copy the container and your dataset on the node given by slurm (i.e in
$SLURM_TMPDIR) and execute the code <YOUR_CODE> within the container <YOUR_CONTAINER> with:

$ singularity exec --nv -H $HOME:/home -B $SLURM_TMPDIR:/dataset/ -B $SLURM_TMPDIR:/tmp_log/ -B $SCRATCH:/final_log/ $SLURM_TMPDIR/<YOUR_CONTAINER> python <YOUR_CODE>

Remember that /dataset, /tmp_log and /final_log were created in the previous section. Now each time, we’ll
use singularity, we are explicitly telling it to mount $SLURM_TMPDIR on the cluster’s node in the folder /dataset
inside the container with the option -B such that each dataset downloaded by pytorch in /dataset will be available in
$SLURM_TMPDIR.

This will allow us to have code and scripts that are invariant to the cluster environment. The option -H specify what
will be the container’s home. For example, if you have your code in $HOME/Project12345/Version35/ you can
specify -H $HOME/Project12345/Version35:/home, thus the container will only have access to the code inside
Version35.

4.3. 1.3 Portability concerns and solutions 37

MILA Docs Documentation, Release latest

If you want to run multiple commands inside the container you can use:

$ singularity exec --nv -H $HOME:/home -B $SLURM_TMPDIR:/dataset/ -B $SLURM_TMPDIR:/tmp_log/ -B $SCRATCH:/final_log/ $SLURM_TMPDIR/<YOUR_CONTAINER> bash -c 'pwd && ls && python <YOUR_CODE>'

1.3.4.3.1 Example: Interactive case (srun/salloc)

Once you get an interactive session with slurm, copy <YOUR_CONTAINER> and <YOUR_DATASET> to $SLURM_TMPDIR

0. Get an interactive session
$ srun --gres=gpu:1
1. Copy your container on the compute node
$ rsync -avz $SCRATCH/<YOUR_CONTAINER> $SLURM_TMPDIR
2. Copy your dataset on the compute node
$ rsync -avz $SCRATCH/<YOUR_DATASET> $SLURM_TMPDIR

then use singularity shell to get a shell inside the container

3. Get a shell in your environment
$ singularity shell --nv -H $HOME:/home -B $SLURM_TMPDIR:/dataset/ -B $SLURM_TMPDIR:/tmp_log/ -B $SCRATCH:/final_log/ $SLURM_TMPDIR/<YOUR_CONTAINER>

4. Execute your code
<Singularity_container>$ python <YOUR_CODE>

or use singularity exec to execute <YOUR_CODE>.

3. Execute your code
$ singularity exec --nv -H $HOME:/home -B $SLURM_TMPDIR:/dataset/ -B $SLURM_TMPDIR:/tmp_log/ -B $SCRATCH:/final_log/ $SLURM_TMPDIR/<YOUR_CONTAINER> python <YOUR_CODE>

You can create also the following alias to make your life easier.

$ alias my_env='singularity exec --nv -H $HOME:/home -B $SLURM_TMPDIR:/dataset/ -B $SLURM_TMPDIR:/tmp_log/ -B $SCRATCH:/final_log/ $SLURM_TMPDIR/<YOUR_CONTAINER>'

This will allow you to run any code with:

$ my_env python <YOUR_CODE>

1.3.4.3.2 Example: sbatch case

You can also create a sbatch script:

1 #!/bin/bash
2 #SBATCH --cpus-per-task=6 # Ask for 6 CPUs
3 #SBATCH --gres=gpu:1 # Ask for 1 GPU
4 #SBATCH --mem=10G # Ask for 10 GB of RAM
5 #SBATCH --time=0:10:00 # The job will run for 10 minutes
6

7 # 1. Copy your container on the compute node
8 rsync -avz $SCRATCH/<YOUR_CONTAINER> $SLURM_TMPDIR
9 # 2. Copy your dataset on the compute node

10 rsync -avz $SCRATCH/<YOUR_DATASET> $SLURM_TMPDIR
11 # 3. Executing your code with singularity
12 singularity exec --nv \
13 -H $HOME:/home \
14 -B $SLURM_TMPDIR:/dataset/ \
15 -B $SLURM_TMPDIR:/tmp_log/ \
16 -B $SCRATCH:/final_log/ \
17 $SLURM_TMPDIR/<YOUR_CONTAINER> \

(continues on next page)

38 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

(continued from previous page)

18 python <YOUR_CODE>
19 # 4. Copy whatever you want to save on $SCRATCH
20 rsync -avz $SLURM_TMPDIR/<to_save> $SCRATCH

1.3.4.3.3 Issue with PyBullet and OpenGL libraries

If you are running certain gym environments that require pyglet, you may encounter a problem when running your
singularity instance with the Nvidia drivers using the --nv flag. This happens because the --nv flag also provides the
OpenGL libraries:

libGL.so.1 => /.singularity.d/libs/libGL.so.1
libGLX.so.0 => /.singularity.d/libs/libGLX.so.0

If you don’t experience those problems with pyglet, you probably don’t need to address this. Otherwise,
you can resolve those problems by apt-get install -y libosmesa6-dev mesa-utils mesa-utils-extra
libgl1-mesa-glx, and then making sure that your LD_LIBRARY_PATH points to those libraries before the ones in
/.singularity.d/libs.

%environment
...
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/mesa:$LD_LIBRARY_PATH

1.3.4.3.4 Mila cluster

On the Mila cluster $SCRATCH is not yet defined, you should add the experiment results you want to keep in /network/
tmp1/$USER/. In order to use the sbatch script above and to match other cluster environment’s names, you can define
$SCRATCH as an alias for /network/tmp1/$USER with:

$ echo "export SCRATCH=/network/tmp1/$USER" >> ~/.bashrc

Then, you can follow the general procedure explained above.

1.3.4.3.5 Compute Canada

Using singularity on Compute Canada is similar except that you need to add Yoshua’s account name and load singularity.
Here is an example of a sbatch script using singularity on compute Canada cluster:

Warning: You should use singularity/2.6 or singularity/3.4. There is a bug in singularity/3.2 which makes gpu
unusable.

1 #!/bin/bash
2 #SBATCH --account=rpp-bengioy # Yoshua pays for your job
3 #SBATCH --cpus-per-task=6 # Ask for 6 CPUs
4 #SBATCH --gres=gpu:1 # Ask for 1 GPU
5 #SBATCH --mem=32G # Ask for 32 GB of RAM
6 #SBATCH --time=0:10:00 # The job will run for 10 minutes
7 #SBATCH --output="/scratch/<user>/slurm-%j.out" # Modify the output of sbatch
8

(continues on next page)

4.3. 1.3 Portability concerns and solutions 39

MILA Docs Documentation, Release latest

(continued from previous page)

9 # 1. You have to load singularity
10 module load singularity
11 # 2. Then you copy the container to the local disk
12 rsync -avz $SCRATCH/<YOUR_CONTAINER> $SLURM_TMPDIR
13 # 3. Copy your dataset on the compute node
14 rsync -avz $SCRATCH/<YOUR_DATASET> $SLURM_TMPDIR
15 # 4. Executing your code with singularity
16 singularity exec --nv \
17 -H $HOME:/home \
18 -B $SLURM_TMPDIR:/dataset/ \
19 -B $SLURM_TMPDIR:/tmp_log/ \
20 -B $SCRATCH:/final_log/ \
21 $SLURM_TMPDIR/<YOUR_CONTAINER> \
22 python <YOUR_CODE>
23 # 5. Copy whatever you want to save on $SCRATCH
24 rsync -avz $SLURM_TMPDIR/<to_save> $SCRATCH

4.4 1.4 Using containers

Docker containers are now available on the local cluster with a root-less system called Shifter integrated into Slurm. It
is still in beta and be careful with this usage

4.4.1 1.4.1 Initialising your Containers

To first use a container, you have to pull it to the local registry to be converted to a Shifter-compatible image.

$ shifterimg pull docker:image_name:latest

You can list available images with

$ shifterimg images

DO NOT USE IMAGES WITH SENSITIVE INFORMATION yet, it will soon be possible. For now, every image
is pulled to a common registry but access-control will soon be implemented.

4.4.2 1.4.2 Using in Slurm

1.4.2.1 Containerized Batch job

You must use the --image=docker:image_name:latest directive to specify the container to use. Once the con-
tainer is mounted, you are not yet inside the container’s file-system, you must use the shifter command to execute a
command in the chroot environment of the container.

e.g.:

1 #!/bin/bash
2 #SBATCH --image=docker:image_name:latest
3 #SBATCH --nodes=1
4 #SBATCH --partition=low
5

6 shifter python myPythonScript.py args

40 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

1.4.2.2 Container Interactive job

Using the salloc command, you can request the image while getting the allocation

$ salloc -c2 --mem=16g --image=docker:image_name:latest

and once in the job, you can activate the container’s environment with the shifter command

$ shifter /bin/bash

4.4.3 1.4.3 Command line

shifter support various options on the command line but you should be set with the image name and the command
to execute:

shifter [-h|--help] [-v|--verbose] [--image=<imageType>:<imageTag>]
[--entrypoint[=command]] [--workdir[=/path]]
[-E|--clearenv] [-e|--env=<var>=<value>] [--env-file=/env/file
[-V|--volume=/path/to/bind:/mnt/in/image[:<flags>[,...]][;...]]
[-m|--module=<modulename>[,...]]
[-- /command/to/exec/in/shifter [args...]]

4.4.4 1.4.4 Volumes

/home/yourusername, /Tmp, /ai and all /network/.. sub-folders are mounted inside the container.

4.4.5 1.4.5 GPU

To access the GPU inside a container, you need to specify --module=nvidia on the sbatch/salloc/shifter
command line

$ shifter --image=centos:7 --module=nvidia bash

Following folders will be mounted in the container:

Host Container Comment
/ai/apps/cuda/10.0 /cuda Cuda libraries and bin, added to PATH
/usr/bin /nvidia/bin To access nvidia-smi
/usr/lib/x86_64-linux-gnu/ /nvidia/lib LD_LIBRARY_PATH will be set to /nvidia/lib

Note:

• Use image names in 3 parts to avoid confusion: _type:name:tag_

• Please keep in mind that root is squashed on Shifter images, so the software should be installed in a way that is
executable to someone with user-level permissions.

• Currently the /etc and /var directories are reserved for use by the system and will be overwritten when the
image is mounted

• The container is not isolated so you share the network card and all hardware from the host, no need to forward
ports

4.4. 1.4 Using containers 41

MILA Docs Documentation, Release latest

4.4.6 1.4.6 Example

username@login-2:~$ shifterimg pull docker:alpine:latest
2019-10-11T20:12:42 Pulling Image: docker:alpine:latest, status: READY

username@login-2:~$ salloc -c2 --gres=gpu:1 --image=docker:alpine:latest
salloc: Granted job allocation 213064
salloc: Waiting for resource configuration
salloc: Nodes eos20 are ready for job

username@eos20:~$ cat /etc/os-release
NAME="Ubuntu"
VERSION="18.04.2 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.2 LTS"
VERSION_ID="18.04"
VERSION_CODENAME=bionic
UBUNTU_CODENAME=bionic

username@eos20:~$ shifter sh
~ $ cat /etc/os-release
NAME="Alpine Linux"
ID=alpine
VERSION_ID=3.10.2
PRETTY_NAME="Alpine Linux v3.10"

~ $

Note: Complete Documentation: https://docs.nersc.gov/programming/shifter/how-to-use/

4.5 1.5 Contributing datasets

4.5.1 1.5.1 Add a dataset for Mila users

If a dataset could help the research of others at Mila, this form can be filled to request it’s addition to /network/datasets.

Those datasets can be mirrored to the Béluga cluster in ~/projects/rrg-bengioy-ad/data/curated/ if they
follow Compute Canada’s good practices on data.

42 Chapter 4. 1 Users Guide

https://docs.nersc.gov/programming/shifter/how-to-use/
https://forms.gle/vDVwD2rZBmYHENgZA
Information.html#storage

MILA Docs Documentation, Release latest

4.5.2 1.5.2 Publicly share a Mila dataset

Mila offers two ways to publicly share a Mila dataset:

• Academic Torrent

• Google Drive

Note that these options are not mutually exclusive and both can be used.

We do host Mila datasets using Academic Torrent and we also offer Google Drive space.

1.5.2.1 Academic Torrent

Mila hosts/seeds some datasets created by the Mila community through Academic Torrent. The first step is to create
an account and a torrent file.

Then drop the dataset in /miniscratch/transit_datasets and send the Academic Torrent url to Mila’s helpdesk.
If the dataset does not reside on the Mila clusterm, only the Academic Torrent url would be needed to proceed with the
initial download. Then you can delete / stop sharing your copy.

1.5.2.2 Google Drive

Only a member of the staff team can upload to Mila’s Google Drive which requires to first drop the dataset in /
miniscratch/transit_datasets. Then, contact Mila’s helpdesk and provide the following informations:

• directory containing the dataset in /miniscratch/transit_datasets

• the name of the dataset

• the arXiv and GitHub urls (those can be sent later if the article is still in the submission process)

• instructions to know if the dataset needs to be unziped, untared or else before uploading to Google Drive

1.5.2.3 Digital Object Identifier (DOI)

It is recommended to get a DOI to reference the dataset. A DOI is a permanent id/url which prevents losing references
of online scientific data. https://figshare.com can be used to create a DOI:

• Go in My Data

• Create an item by clicking Create new item

• Check Metadata record only at the top

• Fill the metadata fields

Then reference the dataset using https://doi.org like this: https://doi.org/10.6084/m9.figshare.2066037

4.5. 1.5 Contributing datasets 43

https://academictorrents.com
https://drive.google.com/drive/folders/1peJ6VF9wQ-LeETgcdGxu1e4fo28JbtUt
https://academictorrents.com
https://academictorrents.com/upload.php
https://it-support.mila.quebec
https://drive.google.com/drive/folders/1peJ6VF9wQ-LeETgcdGxu1e4fo28JbtUt
https://it-support.mila.quebec
https://figshare.com
https://doi.org
https://doi.org/10.6084/m9.figshare.2066037

MILA Docs Documentation, Release latest

4.6 1.6 Notebooks

4.6.1 1.6.1 JupyterHub

JupyterHub is a platform connected to SLURM to start a JupyterLab session as a batch job then connects it when
the allocation has been granted. It does not require any ssh tunnel or port redirection, the hub acts as a proxy server
that will redirect you to a session as soon as it is available.

It is currently available for Mila clusters and some Compute Canada clusters (under PBS)

Cluster Address Login type
Mila Local https://jupyterhub.server.mila.quebec Google Oauth
Mila Cloud GCP https://jupyterhub.gcp.mila.quebec Google Oauth
Compute Canada https://docs.computecanada.ca/wiki/JupyterHub CC login

Warning: Do not forget to close the JupyterLab session! Closing the window leaves running the session and the
SLURM job it is linked to.

To close it, use the hub menu and then Control Panel > Stop my server

Note: For Mila Clusters:

mila.quebec account’s credential should be used to login and start a JupyterLab session.

1.6.1.1 Access Mila Storage in JupyterLab

Unfortunatly, JupyterLab does not allow the navigation to parent directories of $HOME. This makes some file systems
like /network/datasets or $SLURM_TMPDIR unavailable through their absolute path in the interface. It is however
possible to create symbolic links to those resources. To do so, you can use the ln -s command:

ln -s /network/datasets $HOME

Note that $SLURM_TMPDIR is a directory that is dinamycaly created for each job so you would need to recreate the
symbolic link everytime you start a JupyterHub session:

ln -sf $SLURM_TMPDIR $HOME

4.7 1.7 Advanced SLURM usage and Multiple GPU jobs

4.7.1 1.7.1 Handling preemption

There are 2 types of preemption:

• On the local cluster: jobs can preempt one-another depending on their priority (unkillable>high>low) (See the
Slurm documentation)

• On the cloud clusters: virtual machines can be preempted as a limitation of less expensive virtual machines
(spot/low priority)

44 Chapter 4. 1 Users Guide

https://jupyterhub.server.mila.quebec
https://jupyterhub.gcp.mila.quebec
https://docs.computecanada.ca/wiki/JupyterHub
https://slurm.schedmd.com/preempt.html

MILA Docs Documentation, Release latest

On the local cluster, the default preemption mechanism is to killed and re-queue the job automatically without any
notice. To allow a different preemption mechanism, every partition have been duplicated (i.e. have the same character-
istics as their counterparts) allowing a 120sec grace period before killing your job but don’t requeue it automatically:
those partitions are referred by the suffix: -grace (main-grace, low-grace, cpu_jobs-grace).

When using a partition with a grace period, a series of signals consisting of first SIGCONT and SIGTERM then SIGKILL
will be sent to the SLURM job. It’s good practice to catch those signals using the Linux trap command to properly
terminate a job and save what’s necessary to restart the job. On each cluster, you’ll be allowed a grace period before
SLURM actually kills your job (SIGKILL).

The easiest way to handle preemption is by trapping the SIGTERM signal

1 #SBATCH --ntasks=1
2 #SBATCH
3

4 exit_script() {
5 echo "Preemption signal, saving myself"
6 trap - SIGTERM # clear the trap
7 # Optional: sends SIGTERM to child/sub processes
8 kill -- -$$
9 }

10

11 trap exit_script SIGTERM
12

13 # The main script part
14 python3 my_script

Note:

Requeuing:
The local Slurm cluster does not allow a grace period before preempting a
job while requeuing it automatically, therefore your job will be cancelled at
the end of the grace period.
To automatically requeue it, you can just add the sbatch command inside
your exit_script function.

The following table summarizes the different preemption mode and grace periods:

Cluster Signal(s) Grace Period Requeued
local SIGCONT/SIGTERM 120s No
Google Gloud (GCP) SIGCONT/SIGTERM 30s Yes
Amazon (AWS) SIGCONT/SIGTERM 120s Yes
Azure • • •

4.7. 1.7 Advanced SLURM usage and Multiple GPU jobs 45

MILA Docs Documentation, Release latest

4.7.2 1.7.2 Packing jobs

1.7.2.1 Sharing a GPU between processes

srun, when used in a batch job is responsible for starting tasks on the allocated resources (see srun) SLURM batch
script

1 #SBATCH --ntasks-per-node=2
2 #SBATCH --output=myjob_output_wrapper.out
3 #SBATCH --ntasks=2
4 #SBATCH --gres=gpu:1
5 #SBATCH --cpus-per-task=4
6 #SBATCH --mem=18G
7 srun -l --output=myjob_output_%t.out python script args

this will run python 2 times, each process with 4 CPUs with the same arguments --output=myjob_output_%t.out
will create 2 output files appending the task id (%t) to the filename and 1 global log file for things happening outside
the srun command.

Knowing that, if you want to have 2 different arguments to the python program, you can use a multi-prog configuration
file: srun -l --multi-prog silly.conf

0 python script firstarg
1 python script secondarg

or by specifying a range of tasks

0-1 python script %t

%t being the taskid that your python script will parse. Note the -l on the srun command: this will prepend each line
with the taskid (0:, 1:)

1.7.2.2 Sharing a node with multiple GPU 1process/GPU

On Compute Canada, several nodes, especially nodes with largeGPU (P100) are reserved for jobs requesting the whole
node, therefore packing multiple processes in a single job can leverage faster GPU.

If you want different tasks to access different GPUs in a single allocation you need to create an allocation requesting a
whole node and using srun with a subset of those resources (1 GPU).

Keep in mind that every resource not specified on the srun command while inherit the global allocation specification
so you need to split each resource in a subset (except –cpu-per-task which is a per-task requirement)

Each srun represents a job step (%s).

Example for a GPU node with 24 cores and 4 GPUs and 128G of RAM Requesting 1 task per GPU

1 #!/bin/bash
2 #SBATCH --nodes=1-1
3 #SBATCH --ntasks-per-node=4
4 #SBATCH --output=myjob_output_wrapper.out
5 #SBATCH --gres=gpu:4
6 #SBATCH --cpus-per-task=6
7 srun --gres=gpu:1 -n1 --mem=30G -l --output=%j-step-%s.out --exclusive --multi-prog␣

→˓python script args1 &
8 srun --gres=gpu:1 -n1 --mem=30G -l --output=%j-step-%s.out --exclusive --multi-prog␣

→˓python script args2 & (continues on next page)

46 Chapter 4. 1 Users Guide

MILA Docs Documentation, Release latest

(continued from previous page)

9 srun --gres=gpu:1 -n1 --mem=30G -l --output=%j-step-%s.out --exclusive --multi-prog␣
→˓python script args3 &

10 srun --gres=gpu:1 -n1 --mem=30G -l --output=%j-step-%s.out --exclusive --multi-prog␣
→˓python script args4 &

11 wait

This will create 4 output files:

• JOBID-step-0.out

• JOBID-step-1.out

• JOBID-step-2.out

• JOBID-step-3.out

1.7.2.3 Sharing a node with multiple GPU & multiple processes/GPU

Combining both previous sections, we can create a script requesting a whole node with four GPUs, allocating 1 GPU
per srun and sharing each GPU with multiple processes

Example still with a 24 cores/4 GPUs/128G RAM Requesting 2 tasks per GPU

1 #!/bin/bash
2 #SBATCH --nodes=1-1
3 #SBATCH --ntasks-per-node=8
4 #SBATCH --output=myjob_output_wrapper.out
5 #SBATCH --gres=gpu:4
6 #SBATCH --cpus-per-task=3
7 srun --gres=gpu:1 -n2 --mem=30G -l --output=%j-step-%s-task-%t.out --exclusive --multi-

→˓prog silly.conf &
8 srun --gres=gpu:1 -n2 --mem=30G -l --output=%j-step-%s-task-%t.out --exclusive --multi-

→˓prog silly.conf &
9 srun --gres=gpu:1 -n2 --mem=30G -l --output=%j-step-%s-task-%t.out --exclusive --multi-

→˓prog silly.conf &
10 srun --gres=gpu:1 -n2 --mem=30G -l --output=%j-step-%s-task-%t.out --exclusive --multi-

→˓prog silly.conf &
11 wait

--exclusive is important to specify subsequent step/srun to bind to different cpus.

This will produce 8 output files, 2 for each step:

• JOBID-step-0-task-0.out

• JOBID-step-0-task-1.out

• JOBID-step-1-task-0.out

• JOBID-step-1-task-1.out

• JOBID-step-2-task-0.out

• JOBID-step-2-task-1.out

• JOBID-step-3-task-0.out

• JOBID-step-3-task-1.out

Running nvidia-smi in silly.conf, while parsing the output, we can see 4 GPUs allocated and 2 tasks per GPU

4.7. 1.7 Advanced SLURM usage and Multiple GPU jobs 47

MILA Docs Documentation, Release latest

$ cat JOBID-step-* | grep Tesla
0: | 0 Tesla P100-PCIE... On | 00000000:04:00.0 Off | 0 |
1: | 0 Tesla P100-PCIE... On | 00000000:04:00.0 Off | 0 |
0: | 0 Tesla P100-PCIE... On | 00000000:83:00.0 Off | 0 |
1: | 0 Tesla P100-PCIE... On | 00000000:83:00.0 Off | 0 |
0: | 0 Tesla P100-PCIE... On | 00000000:82:00.0 Off | 0 |
1: | 0 Tesla P100-PCIE... On | 00000000:82:00.0 Off | 0 |
0: | 0 Tesla P100-PCIE... On | 00000000:03:00.0 Off | 0 |
1: | 0 Tesla P100-PCIE... On | 00000000:03:00.0 Off | 0 |

4.8 1.8 Frequently asked questions (FAQs)

4.8.1 1.8.1 Connection/SSH issues

1.8.1.1 I’m getting connection refused while trying to connect to a login node

Login nodes are protected against brute force attacks and might ban your IP if it detects too many connections/failures.
You can try to unban yourself by using the following web page: https://unban.server.mila.quebec/

4.8.2 1.8.2 Shell issues

1.8.2.1 How do I change my shell

By default you will be assigned /bin/bash as a shell. If you would like to change for another one, please submit a
support ticket.

4.8.3 1.8.3 SLURM issues

1.8.3.1 How can I get an interactive shell on the cluster ?

Use salloc [--slurm_options] without any executable at the end of the command, this will launch your default
shell on an interactive session. Remember that an interactive session is bound to the login node where you start it so
you could risk loosing your job if the login node becomes unreachable.

1.8.3.2 srun: error: –mem and –mem-per-cpu are mutually exclusive

You can safely ignore this, salloc has a default memory flag in case you don’t provide one.

1.8.3.3 How can I see where and if my jobs are running ?

Use squeue -u YOUR_USERNAME to see all your job status and locations. To get more info on a running job, try
scontrol show job #JOBID

48 Chapter 4. 1 Users Guide

https://unban.server.mila.quebec/

MILA Docs Documentation, Release latest

1.8.3.4 Unable to allocate resources: Invalid account or account/partition combination specified

Chances are your account is not setup properly. You should file a ticket in our helpdesk: https://it-support.mila.quebec/
.

1.8.3.5 How do I cancel a job?

Use the scancel #JOBID command with the job ID of the job you want cancelled. In the case you want to cancel all
your jobs, type scancel -u YOUR_USERNAME. You can also cancel all your pending jobs for instance with scancel
-t PD.

1.8.3.6 How can access a node on which one of my job is running ?

You can ssh into a node on which you have a job running, your ssh connection will be adopted by your job, i.e. if
your job finishes your ssh connection will be automatically terminated. In order to connect to a node, you need to have
password-less ssh either with a key present in your home or with an ssh-agent. You can generate a key on the login
node for password-less like this:

$ ssh-keygen (3xENTER)
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 600 ~/.ssh/authorized_keys
$ chmod 700 ~/.ssh

1.8.3.7 I’m getting Permission denied (publickey) while trying to connect to a node ?

See previous question

1.8.3.8 Where do I put my data during a job ?

Your /home as well as the datasets are on shared file-systems, it is recommended to copy them to the $SLURM_TMPDIR
to better process them and leverage higher-speed local drives. If you run a low priority job subject to preemption, it’s
better to keep any output you want to keep on the shared file systems because the $SLURM_TMPDIR is deleted at the end
of each job.

1.8.3.9 slurmstepd: error: Detected 1 oom-kill event(s) in step #####.batch cgroup

You exceeded the amount of memory allocated to your job, either you did not request enough memory or you have a
memory leak in your process. Try increasing the amount of memory requested with --mem= or --mem-per-cpu=.

1.8.3.10 fork: retry: Resource temporarily unavailable

You exceeded the limit of 2000 tasks/PIDs in your job, it probably means there is an issue with a sub-process spawning
too many processes in your script. For any help with your software, please contact the helpdesk.

4.8. 1.8 Frequently asked questions (FAQs) 49

https://it-support.mila.quebec/

MILA Docs Documentation, Release latest

50 Chapter 4. 1 Users Guide

CHAPTER

FIVE

AI TOOLING AND METHODOLOGY HANDBOOK

This section seeks to provide researchers with insightful articles pertaining to aspects of methodology in their work.

51

MILA Docs Documentation, Release latest

52 Chapter 5. AI tooling and methodology handbook

CHAPTER

SIX

COMPUTATIONAL RESOURCES OUTSIDE OF MILA

This section seeks to provide insights and information on computational resources outside the Mila cluster itself.

6.1 Compute Canada Clusters

The clusters Beluga, Cedar, Graham, Helios and Niagara are clusters provided by Compute Canada on which we have
allocations. These are to be used for many jobs, multi-nodes and/or multi-GPU jobs as well as long running jobs

6.1.1 Current allocation description

TODO

6.1.2 Account Creation

To access the Compute Canada (CC) clusters you have to first create an account at https://ccdb.computecanada.ca. Use
a password with at least 8 characters, mixed case letters, digits and special characters. Later you will be asked to create
another password with those rules, and it’s really convenient that the two password are the same.

Then, you have to apply for a role at https://ccdb.computecanada.ca/me/add_role, which basically means telling CC
that you are part of the lab so they know which cluster you can have access to, and track your usage.

You will be asked for the CCRI (See screenshot below). Please reach out to your sponsor to get the CCRI.

53

https://ccdb.computecanada.ca
https://ccdb.computecanada.ca/me/add_role

MILA Docs Documentation, Release latest

You will need to wait for your sponsor to accept before being able to login to the CC clusters.

6.1.3 Clusters

Beluga

Beluga is a cluster located at ETS in Montreal. It uses Slurm to schedule jobs. Its full documentation can be found
here, and its current status here.

You can access Beluga via ssh:

$ ssh <user>@beluga.computecanada.ca

Where <user> is the username you created previously (see Account Creation).

54 Chapter 6. Computational resources outside of Mila

https://docs.computecanada.ca/wiki/B�luga/en
http://status.computecanada.ca

MILA Docs Documentation, Release latest

Launching Jobs

Users must specify the resource allocation Group Name using the flag --account=rrg-bengioy-ad. To launch a
CPU-only job:

$ sbatch --time=1:0:0 --account=rrg-bengioy-ad job.sh

To launch a GPU job:

$ sbatch --time=1:0:0 --account=rrg-bengioy-ad --gres=gpu:1 job.sh

And to get an interactive session, use the salloc command:

$ salloc --time=1:0:0 --account=rrg-bengioy-ad --gres=gpu:1

The full documentation for jobs launching on Beluga can be found here.

Beluga Nodes description

The GPU nodes consist of:

• 40 CPU cores

• 186 GB RAM

• 4 GPU NVIDIA V100 (16GB)

Tip: You should ask for max 10 CPU cores and 32 GB of RAM per GPU you are requesting (as explained here),
otherwise, your job will count for more than 1 allocation, and will take more time to get scheduled.

Beluga Storage

Storage Path Usage
$HOME /home/<user>/

• Code
• Specific libraries

$HOME/projects /project/rpp-bengioy
• Compressed raw datasets

$SCRATCH /scratch/<user>
• Processed datasets
• Experimental results
• Logs of experiments

$SLURM_TMPDIR
• Temporary job results

They are roughly listed in order of increasing performance and optimized for different uses:

• The $HOME folder on NFS is appropriate for codes and libraries which are small and read once. Do not write
experiemental results here!

• The /projects folder should only contain compressed raw datasets (processed datasets should go in
$SCRATCH). We have a limit on the size and number of file in /projects, so do not put anything else there. If you

6.1. Compute Canada Clusters 55

https://docs.computecanada.ca/wiki/Running_jobs
https://docs.computecanada.ca/wiki/Allocations_and_resource_scheduling

MILA Docs Documentation, Release latest

add a new dataset there (make sure it is readable by every member of the group using chgrp -R rpp-bengioy
<dataset>).

• The $SCRATCH space can be used for short term storage. It has good performance and large quotas, but is purged
regularly (every file that has not been used in the last 3 months gets deleted, but you receive an email before this
happens).

• $SLURM_TMPDIR points to the local disk of the node on which a job is running. It should be used to copy the
data on the node at the beginning of the job and write intermediate checkpoints. This folder is cleared after each
job.

When an experiment is finished, results should be transferred back to Mila servers.

More details on storage can be found here.

Modules

Many software, such as Python or MATLAB are already compiled and available on Beluga through the module com-
mand and its subcommands. Its full documentation can be found here.

module avail Displays all the available modules
module load <module> Loads <module>
module spider <module> Shows specific details about <module>

In particular, if you with to use Python 3.6 you can simply do:

$ module load python/3.6

Tip: If you wish to use Python on the cluster, we strongly encourage you to read CC Python Documentation, and in
particular the Pytorch and/or Tensorflow pages.

The cluster has many python packages (or wheels), such already compiled for the cluster. See here for the details. In
particular, you can browse the packages by doing:

$ avail_wheels <wheel>

Such wheels can be installed using pip. Moreover, the most efficient way to use modules on the cluster is to build your
environnement inside your job. See the script example below.

Script Example

Here is a sbatch script that follows good practices on Beluga:

1 #!/bin/bash
2 #SBATCH --account=rrg-bengioy-ad # Yoshua pays for your job
3 #SBATCH --cpus-per-task=6 # Ask for 6 CPUs
4 #SBATCH --gres=gpu:1 # Ask for 1 GPU
5 #SBATCH --mem=32G # Ask for 32 GB of RAM
6 #SBATCH --time=3:00:00 # The job will run for 3 hours
7 #SBATCH -o /scratch/<user>/slurm-%j.out # Write the log in $SCRATCH
8

9 # 1. Create your environement locally
10 module load python/3.6

(continues on next page)

56 Chapter 6. Computational resources outside of Mila

https://docs.computecanada.ca/wiki/B%C3%A9luga/en#Storage
https://docs.computecanada.ca/wiki/Utiliser_des_modules/en
https://docs.computecanada.ca/wiki/Python
https://docs.computecanada.ca/wiki/PyTorch
https://docs.computecanada.ca/wiki/TensorFlow
https://docs.computecanada.ca/wiki/Python/en
https://docs.computecanada.ca/wiki/Python#Creating_virtual_environments_inside_of_your_jobs
https://docs.computecanada.ca/wiki/Python#Creating_virtual_environments_inside_of_your_jobs

MILA Docs Documentation, Release latest

(continued from previous page)

11 virtualenv --no-download $SLURM_TMPDIR/env
12 source $SLURM_TMPDIR/env/bin/activate
13 pip install --no-index torch torchvision
14

15 # 2. Copy your dataset on the compute node
16 # IMPORTANT: Your dataset must be compressed in one single file (zip, hdf5, ...)!!!
17 cp $SCRATCH/<dataset.zip> $SLURM_TMPDIR
18

19 # 3. Eventually unzip your dataset
20 unzip $SLURM_TMPDIR/<dataset.zip> -d $SLURM_TMPDIR
21

22 # 4. Launch your job, tell it to save the model in $SLURM_TMPDIR
23 # and look for the dataset into $SLURM_TMPDIR
24 python main.py --path $SLURM_TMPDIR --data_path $SLURM_TMPDIR
25

26 # 5. Copy whatever you want to save on $SCRATCH
27 cp $SLURM_TMPDIR/<to_save> $SCRATCH

Using CometML and Wandb

The compute nodes for Beluga don’t have access to the internet, but there is a special module that can be loaded in order
to allow training scripts to access some specific servers, which includes the necessary servers for using CometML and
Wandb (“Weights and Biases”).

$ module load httpproxy

More documentation about this can be found at https://docs.computecanada.ca/wiki/Weights_%26_Biases_(wandb).

Graham

Graham is a cluster located at University of Waterloo. It uses SLURM to schedule jobs. Its full documentation can be
found here, and its current status here.

You can access Graham via ssh:

$ ssh <user>@graham.computecanada.ca

Where <user> is the username you created previously (see Account Creation).

Since its structure is similar to Beluga, please look at the Beluga documentation, as well as relevant parts of the Compute
Canada Documentation.

Note: For GPU jobs the ressource allocation Group Name is the same as Beluga, so you should use the flag
--account=rrg-bengioy-ad for GPU jobs.

6.1. Compute Canada Clusters 57

https://docs.computecanada.ca/wiki/Graham/
http://status.computecanada.ca
https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Graham

MILA Docs Documentation, Release latest

Cedar

Cedar is a cluster located at Simon Fraser University. It uses SLURM to schedule jobs. Its full documentation can be
found here, and its current status here.

You can access Cedar via ssh:

$ ssh <user>@cedar.computecanada.ca

Where <user> is the username you created previously (see Account Creation).

Since its structure is similar to Beluga, please look at the Beluga documentation, as well as relevant parts of the Compute
Canada Documentation.

Note: However, we don’t have any CPU priority on Cedar, in this case you can use --account=def-bengioy for
CPU. Thus, it might take some time before they start.

6.1.4 FAQ

What to do with ImportError: /lib64/libm.so.6: version GLIBC_2.23 not found? The structure of the file system is
different than a classical Linux, so your code has trouble finding libraries. See how to install binary packages.

Disk quota exceeded error on /project file systems You have files in /project with the wrong permissions. See
how to change permissions.

58 Chapter 6. Computational resources outside of Mila

https://docs.computecanada.ca/wiki/Cedar
http://status.computecanada.ca
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Installing_software_in_your_home_directory#Installing_binary_packages
https://docs.computecanada.ca/wiki/Frequently_Asked_Questions/en#Disk_quota_exceeded_error_on_.2Fproject_filesystems

CHAPTER

SEVEN

AUDIO AND VIDEO RESOURCES AT MILA

This section seeks to provide information on audio and video systems made available at Mila.

59

MILA Docs Documentation, Release latest

60 Chapter 7. Audio and video resources at Mila

CHAPTER

EIGHT

WHO, WHAT, WHERE IS IDT

This section seeks to help Mila researchers understand the mission and role of the IDT team.

Support To reach the Mila infrastructure support, please file a ticket at https://it-support.mila.quebec/

Contribution If you find any error in the documentation, missing or unclear sections, or would simply
like to contribute, please open an issue or make a pull request on the github page.

61

https://it-support.mila.quebec/
https://github.com/mila-iqia/mila-docs

	Purpose of this documentation
	Intended audience
	Contributing

	General Cluster theory
	What is a computer Cluster ?
	Parts of a computing cluster
	The Login Nodes
	The Compute Nodes
	The Storage nodes
	Different nodes for different uses

	UNIX
	The batch scheduler
	Slurm

	Processing data
	Software dependency management and associated challenges
	Python Virtual environments
	Cluster software modules
	Containers

	Mila research computing infrastructure information and policies
	Roles and authorisations
	Overview of available computing resources at Mila
	Node profile description
	Special Nodes and outliers
	Power9
	AMD

	Data Sharing Policies
	Monitoring
	Notable Sections

	Storage

	1 Users Guide
	1.1 Welcome to the machine; Logging in to the cluster
	1.1.1 SSH Login

	1.2 Running your code
	1.2.1 SLURM commands guide
	1.2.1.1 Basic Usage
	1.2.1.2 Submitting jobs
	1.2.1.2.1 Batch job
	1.2.1.2.2 Interactive job

	1.2.1.3 Job submission arguments
	1.2.1.4 Checking job status
	1.2.1.5 Removing a job

	1.2.2 Partitioning
	1.2.2.1 Information on partitions/nodes

	1.2.3 Useful Commands
	1.2.4 Special GPU requirements
	1.2.5 CPU-only jobs
	1.2.6 Example script

	1.3 Portability concerns and solutions
	1.3.1 Creating a list of your software’s dependencies
	1.3.2 Managing your envs
	1.3.2.1 Pip/Virtualenv
	1.3.2.2 Conda

	1.3.3 Using Modules
	1.3.3.1 The module command
	1.3.3.2 Available Software
	1.3.3.3 Default package location

	1.3.4 On using containers
	1.3.4.1 First way: Build and use a sandbox
	1.3.4.1.1 Download containers from the web
	1.3.4.1.2 How to add or install stuff in a container
	1.3.4.1.3 Creating useful directory
	1.3.4.1.4 Testing
	1.3.4.1.5 Creating a new image from the sandbox

	1.3.4.2 Second way: Use recipes
	1.3.4.2.1 Build recipe on singularity hub
	1.3.4.2.2 Example: Recipe with openai gym, mujoco and miniworld

	1.3.4.3 Using containers on clusters
	1.3.4.3.1 Example: Interactive case (srun/salloc)
	1.3.4.3.2 Example: sbatch case
	1.3.4.3.3 Issue with PyBullet and OpenGL libraries
	1.3.4.3.4 Mila cluster
	1.3.4.3.5 Compute Canada

	1.4 Using containers
	1.4.1 Initialising your Containers
	1.4.2 Using in Slurm
	1.4.2.1 Containerized Batch job
	1.4.2.2 Container Interactive job

	1.4.3 Command line
	1.4.4 Volumes
	1.4.5 GPU
	1.4.6 Example

	1.5 Contributing datasets
	1.5.1 Add a dataset for Mila users
	1.5.2 Publicly share a Mila dataset
	1.5.2.1 Academic Torrent
	1.5.2.2 Google Drive
	1.5.2.3 Digital Object Identifier (DOI)

	1.6 Notebooks
	1.6.1 JupyterHub
	1.6.1.1 Access Mila Storage in JupyterLab

	1.7 Advanced SLURM usage and Multiple GPU jobs
	1.7.1 Handling preemption
	1.7.2 Packing jobs
	1.7.2.1 Sharing a GPU between processes
	1.7.2.2 Sharing a node with multiple GPU 1process/GPU
	1.7.2.3 Sharing a node with multiple GPU & multiple processes/GPU

	1.8 Frequently asked questions (FAQs)
	1.8.1 Connection/SSH issues
	1.8.1.1 I’m getting connection refused while trying to connect to a login node

	1.8.2 Shell issues
	1.8.2.1 How do I change my shell

	1.8.3 SLURM issues
	1.8.3.1 How can I get an interactive shell on the cluster ?
	1.8.3.2 srun: error: –mem and –mem-per-cpu are mutually exclusive
	1.8.3.3 How can I see where and if my jobs are running ?
	1.8.3.4 Unable to allocate resources: Invalid account or account/partition combination specified
	1.8.3.5 How do I cancel a job?
	1.8.3.6 How can access a node on which one of my job is running ?
	1.8.3.7 I’m getting Permission denied (publickey) while trying to connect to a node ?
	1.8.3.8 Where do I put my data during a job ?
	1.8.3.9 slurmstepd: error: Detected 1 oom-kill event(s) in step #####.batch cgroup
	1.8.3.10 fork: retry: Resource temporarily unavailable

	AI tooling and methodology handbook
	Computational resources outside of Mila
	Compute Canada Clusters
	Current allocation description
	Account Creation
	Clusters
	Beluga
	Launching Jobs
	Beluga Nodes description
	Beluga Storage
	Modules
	Script Example
	Using CometML and Wandb

	Graham
	Cedar

	FAQ

	Audio and video resources at Mila
	Who, what, where is IDT

