

    
      
          
            
  
Mila technical documentation

Welcome to Mila’s technical documentation. See contents below.



	1. Purpose of this documentation
	1.1. Intended audience

	1.2. Contributing





	2. General Cluster theory
	2.1. What is a computer Cluster ?

	2.2. Parts of a computing cluster

	2.3. UNIX

	2.4. The batch scheduler

	2.5. Processing data

	2.6. Software dependency management and associated challenges





	3. Mila research computing infrastructure information and policies
	3.1. Roles and authorisations

	3.2. Overview of available computing resources at Mila

	3.3. Node profile description

	3.4. Data Sharing Policies

	3.5. Monitoring

	3.6. Storage





	4. 1 Users Guide
	4.1. 1.1 Welcome to the machine; Logging in to the cluster

	4.2. 1.2 Running your code

	4.3. 1.3 Portability concerns and solutions

	4.4. 1.4 Using containers

	4.5. 1.5 Contributing datasets

	4.6. 1.6 Notebooks

	4.7. 1.7 Advanced SLURM usage and Multiple GPU jobs

	4.8. 1.8 Frequently asked questions (FAQs)





	5. AI tooling and methodology handbook

	6. Computational resources outside of Mila
	6.1. Compute Canada Clusters





	7. Audio and video resources at Mila

	8. Who, what, where is IDT






	Support

	To reach the Mila infrastructure support, please file a ticket
at https://it-support.mila.quebec/



	Contribution

	If you find any error in the documentation, missing or unclear
sections, or would simply like to contribute, please open an
issue or make a pull request on the github page [https://github.com/mila-iqia/mila-docs].









            

          

      

      

    

  

    
      
          
            
  
1. Purpose of this documentation

This documentation aims to cover the information required to run scientific
and data-intensive computing tasks at Mila and the available resources for its
members.

It also aims to be an outlet for sharing know-how, tips and tricks and examples
from the IDT team to the Mila researcher community.


1.1. Intended audience

This documentation is mainly intended for Mila researchers having access to the
Mila cluster. This access is determined by your researcher status. See
Roles and authorisations for more information. The core of the
information with this purpose can be found in the following section :
Mila research computing infrastructure information and policies.

However, we also aim to provide more general information which can be useful
outside the scope of using the Mila cluster. For instance, more general theory
on computational considerations and such. In this perspective, we hope the
documentation can be of use for all of Mila members.




1.2. Contributing

See the following file for contribution guidelines :

# Contributing to the Mila Docs

Thank you for your interest into making a better documentation for all at Mila. Here are some gidelines to help bring your contribbutions to life.

## What could be included

* Mila cluster usage
* Compute Canada cluster usage
* Job management tips / tricks
* Research good practices
* Software development good practices
* Useful tools

## Issues / Pull Requests

### Issues

Issues can be used to report any error in the documentation, missing or unclear sections, broken tools or other suggestions to improve the overall documentation.

### Pull Requests

PRs are welcome! Reference the related issues like this:

```
Resolves: #123
See also: #456, #789
```

You can attempt to build the docs yourself to see if the formating is right:

```console
python3 -m pip install -r docs/requirements.txt
sphinx-build -b html docs/ docs/_build/
```

This will produce the html version of the documentation which you can navigate by opening `docs/_build/index.html`.

If you have any touble building the docs, don't hesitate to open an issue to request help or simply provide the content you would like to add in markdown if that is simpler for you.

## Sphinx / reStructuredText (reST)

The markup language used for the Mila Docs is [reStructuredText](http://docutils.sourceforge.net/rst.html) and we follow the [Python’s Style Guide for documenting](https://docs.python.org/devguide/documenting.html#style-guide).

Here are some of reST syntax useful to know (more can be found in [Sphinx's reST Primer](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html)):

### Inline markup

* one asterisk: `*text*` for emphasis (italics),
* two asterisks: `**text**` for strong emphasis (boldface), and
* backquotes: ` ``text`` ` for code samples, and
* external links: `` `Link text <http://target>`_ ``.

### Lists

```reST
* this is
* a list

  * with a nested list
  * and some subitems

* and here the parent list continues
```

### Sections

```reST
=================
This is a heading
=================
```

There are no heading levels assigned to certain characters as the structure is determined from the succession of headings. However, the Python documentation is suggesting the following convention:

    * `#` with overline, for parts
    * `*` with overline, for chapters
    * `=`, for sections
    * `-`, for subsections
    * `^`, for subsubsections
    * `"`, for paragraphs

### Note box

```reST
.. note::
   This is a long
   long long note
```











            

          

      

      

    

  

    
      
          
            
  
2. General Cluster theory


2.1. What is a computer Cluster ?


A computer cluster is a set of loosely or tightly connected computers that
work together so that, in many respects, they can be viewed as a single
system.

Wikipedia [https://en.wikipedia.org/wiki/Computer_cluster]







2.2. Parts of a computing cluster

In order to provide high performance computation capabilities, clusters can
combine hundreds to thousands of computers, called nodes, which are all
inter-connected with a high-performance communication network. Most nodes are
designed for high-performance computations, but clusters can also use
specialized nodes to offer parallel file systems, databases, login nodes and
even the cluster scheduling functionality as pictured in the image below.

[image: _images/cluster_overview2.png]
We will overview the different types of nodes which you can encounter on a
typical cluster.


2.2.1. The Login Nodes

To execute computing processes on a cluster, you must first connect to a
cluster and this is accomplished through a login node. These so-called
login nodes are the entry point to most clusters.

Another entry point to some clusters such as the Mila cluster is the JupyterHub
WEB interface, but we’ll read about that later. For now let’s return to the
subject of this section; Login nodes. To connect to these, you would typically
use a remote shell connection. The most usual tool to do so is SSH. You’ll hear
and read a lot about this tool. Imagine it as a very long (and somewhat
magical) extension cord which connects the computer you are using now, such as
your laptop, to a remote computer’s terminal shell. You might already know what
a terminal shell is if you ever used the command line.




2.2.2. The Compute Nodes

In the field of artificial intelligence, you will usually be on the hunt for
GPUs. In most clusters, the compute nodes are the ones with GPU capacity.

While there is a general paradigm to tend towards a homogeneous configuration
for nodes, this is not always possible in the field of artificial intelligence
as the hardware evolve rapidly as is being complemented by new hardware and so
on. Hence, you will often read about computational node classes. Some of which
might have different GPU models or even no GPU at all. It is important to keep
this in mind as you’ll have to be aware of which nodes you are working on.
More on that later.




2.2.3. The Storage nodes

Some computers on a cluster will have one function only which is to serve files.
While the name of these computers might matter to some, as a user, you’ll only
be concerned about the path to the data. More on that in the Processing data section.




2.2.4. Different nodes for different uses

It is important to note here the difference in intended uses between the
compute nodes and the login nodes. While the Compute Nodes are meant for heavy
computation, the Login Nodes are not.

The login nodes however are used by everyone who uses the cluster and care must
be taken not to overburden these nodes. Consequently, only very short and light
processes should be run on these otherwise the cluster may become inaccessible.
In other words, please refrain from executing long or compute intensive
processes on login nodes because it affects all other users. In some cases, you
will also find that doing so might get you into trouble.






2.3. UNIX

All clusters typically run on GNU/Linux distributions. Hence a minimum
knowledge of GNU/Linux and BASH is usually required to use them. See the
following tutorial [https://docs.computecanada.ca/wiki/Linux_introduction]
for a rough guide on getting started with Linux.




2.4. The batch scheduler

Once connected to a login node, presumably with SSH, you can issue a job
execution request to what is called the job scheduler. The job scheduler used
at Mila and Compute Canada clusters is called SLURM (slurm).
The job scheduler’s main role is to find a place to run your program in what is
simply called : a job. This “place” is in fact one of many computers
synchronised to the scheduler which are called : Compute Nodes.

In fact it’s a bit trickier than that, but we’ll stay at this abstraction level
for now.


2.4.1. Slurm

Resource sharing on a supercomputer/cluster is orchestrated by a resource
manage/job scheduler.  Users submit jobs, which are scheduled and allocated
resources (CPU time, memory, GPUs, etc.) by the resource manager, if the
resources are available the job can start otherwise it will be placed in queue.

On a cluster, users don’t have direct access to the compute nodes but instead
connect to a login node to pass the commands they would like to execute in a
script for the workload manager to execute.

Mila as well as Compute Canada use the workload manager Slurm [https://slurm.schedmd.com/documentation.html] to schedule and allocate
resources on their infrastructure.

Slurm client commands are available on the login nodes for you to submit
jobs to the main controller and add your job to the queue. Jobs are of 2 types:
batch jobs and interactive jobs.

For practical examples of SLURM commands on the Mila cluster, see 1.2   Running your code.






2.5. Processing data

Clusters have different types of file systems to support different data
storage use cases. We differentiate them by name. You’ll hear or read about
file systems such as “home”, “scratch” or “project” and so on.

Most of these file systems are are provided in a way which is globally available to all nodes in the cluster. Software or data required by jobs can be accessed from any node on the cluster. (See Mila or CC for more information on available file systems)

Different file systems have different performance levels. For instance, backed
up file-systems ( such as $PROJECT ) provide more space and can handle large
files but cannot sustain highly parallel accesses typically required for high speed model training.

Each compute node has local file systems ( of which $SLURM_TMPDIR ) that
are usually more efficient but any data remaining on these will be erased at
the end of the job execution for the next job to come along.




2.6. Software dependency management and associated challenges

This section aims to raise awareness to problems one can encounter when trying
to run a software on different computers and how this is dealt with on typical
computation clusters.


2.6.1. Python Virtual environments

TODO




2.6.2. Cluster software modules

Both Mila and Compute Canada clusters provides various software through the
module command.  Modules are small files which modify your environment
variables to register the correct location of the software you wish to use. To
learn practical examples of module uses, see 1.3.3.1   The module command.




2.6.3. Containers

Containers are a special form of isolation of software and it’s dependencies. It
does not only create a separate file system, but can also create a separate
network and execution environment. All software you have used for your
experiments is packaged inside one file. You simply copy the image of the
container you built on every environment without the need to install anything.









            

          

      

      

    

  

    
      
          
            
  
3. Mila research computing infrastructure information and policies

This section seeks to provide factual information and policies on the Mila cluster computing environments.


3.1. Roles and authorisations

There are mainly two types of researchers statuses at Mila :


	Core researchers


	Affiliated researchers




This is determined by Mila policy. Core researchers have access to the Mila
computing cluster. See your supervisor’s Mila status to know what is your own
status.




3.2. Overview of available computing resources at Mila

The Mila cluster is to be used for regular development and relatively small
number of jobs (< 5). It is an heterogeneous cluster. It uses SLURM to schedule jobs.




3.3. Node profile description


















	Name

	GPU

	CPUs

	Sockets

	Cores/Socket

	Threads/Core

	Memory (Gb)

	TmpDisk (Tb)

	Arch

	Features



	Primary

	Secondary



	GPU Arch and Memory



	Model

	#

	Model

	#





	KEPLER




	kepler[2-3]

	k80

	8

	
	
	16

	2

	4

	2

	256

	3.6

	x86_64

	tesla,12GB



	kepler4

	m40

	4

	
	
	16

	2

	4

	2

	256

	3.6

	x86_64

	maxwell,24GB



	kepler5

	v100

	2

	m40

	1

	16

	2

	4

	2

	256

	3.6

	x86_64

	volta,12GB



	MILA




	mila01

	v100

	8

	
	
	80

	2

	20

	2

	512

	7

	x86_64

	tesla,16GB



	mila02

	v100

	8

	
	
	80

	2

	20

	2

	512

	7

	x86_64

	tesla,32GB



	mila03

	v100

	8

	
	
	80

	2

	20

	2

	512

	7

	x86_64

	tesla,32GB



	POWER9




	power9[1-2]

	v100

	4

	
	
	128

	2

	16

	4

	586

	0.88

	power9

	tesla,nvlink,16gb



	TITAN RTX




	rtx[6,9]

	titanrtx

	2

	
	
	20

	1

	10

	2

	128

	3.6

	x86_64

	turing,24gb



	rtx[1-5,7-8]

	titanrtx

	2

	
	
	20

	1

	10

	2

	128

	0.93

	x86_64

	turing,24gb



	New Compute Nodes




	cn-a[01-11]

	rtx8000

	8

	
	
	80

	2

	20

	2

	380

	3.6

	x86_64

	turing,48gb



	cn-b[01-05]

	v100

	8

	
	
	80

	2

	20

	2

	380

	3.6

	x86_64

	tesla,nvlink,32gb



	cn-c[01-40]

	rtx8000

	8

	
	
	64

	2

	32

	1

	386

	3

	x86_64

	turing,48gb



	cn-d[01-02]

	A100

	8

	
	
	256

	8

	16

	2

	1032

	1.4

	x86_64

	ampere,40gb







3.3.1. Special Nodes and outliers


3.3.1.1. Power9

Power9 [https://en.wikipedia.org/wiki/POWER9] servers are using a different processor instruction set than Intel and AMD (x86_64).
As such you need to setup your environment again for those nodes specifically.


	Power9 Machines have 128 threads. (2 processors / 16 cores / 4 way SMT)


	4 x V100 SMX2 (16 GB) with NVLink


	In a Power9 machine GPUs and CPUs communicate with each other using NVLink instead of PCIe.




This allow them to communicate quickly between each other. More on LMS [https://developer.ibm.com/linuxonpower/2019/05/17/performance-results-with-tensorflow-large-model-support-v2/]

Power9 have the same software stack as the regular nodes and each software should be included to deploy your environment
as on a regular node.




3.3.1.2. AMD


Warning

As of August 20 the GPUs had to return back to AMD.
Mila will get more samples. You can join the amd [https://mila-umontreal.slack.com/archives/CKV5YKEP6/p1561471261000500] slack channels to get the latest information



Mila has a few node equipped with MI50 [https://www.amd.com/en/products/professional-graphics/instinct-mi50] GPUs.

srun --gres=gpu -c 8 --reservation=AMD --pty bash

 first time setup of AMD stack
conda create -n rocm python=3.6
conda activate rocm

pip install tensorflow-rocm
pip install /wheels/pytorch/torch-1.1.0a0+d8b9d32-cp36-cp36m-linux_x86_64.whl










3.4. Data Sharing Policies

/miniscratch supports ACL to allows collaborative
work on rapidly changing data, i.g. work in process datasets, model
checkpoints, etc…

/network/projects aims to offer a collaborative
space for long-term projects. Data that should be kept for a longer period then
90 days can be stored in that location but first a request to Mila’s helpdesk [https://it-support.mila.quebec] has to be made.




3.5. Monitoring

Every compute node on the Mila cluster has a monitoring daemon allowing you to
check the resource usage of your model and identify bottlenecks.
You can access the monitoring web page by typing in your browser: <node>.server.mila.quebec:19999.

For example, if I have a job running on eos1 I can type eos1.server.mila.quebec:19999 and
the page below should appear.

[image: monitoring.png]

3.5.1. Notable Sections

You should focus your attention on the metrics below


	CPU



	iowait (pink line): High values means your model is waiting on IO a lot (disk or network)











[image: monitoring_cpu.png]

	RAM



	Make sure you are only allocating enough to make your code run and not more otherwise you are wasting resources.











[image: monitoring_ram.png]

	NV



	Usage of each GPU


	You should make sure you use the GPU to its fullest



	Select the biggest batch size if possible


	Spawn multiple experiments


















[image: monitoring_gpu.png]

	Users



	In some cases the machine might seem slow, it may be useful to check if other people are using the machine as well











[image: monitoring_users.png]





3.6. Storage










	Path

	Performance

	Usage

	Quota (Space/Files)

	Auto-cleanup





	$HOME or /home/mila/<u>/<username>/

	Low

	
	Personal user space


	Specific libraries, code, binaries





	200G/1000K

	


	/network/projects/<groupname>/

	Fair

	
	Shared space to facilitate
collaboration between researchers


	Long-term project storage





	200G/1000K

	


	/network/data1/

	High

	
	Raw datasets (read only)





	
	


	/network/datasets/

	High

	
	Curated raw datasets (read only)





	
	


	/miniscratch/

	High

	
	Temporary job results


	Processed datasets


	Optimized for small Files


	Supports ACL to help share the
data with others





	
	90 days



	$SLURM_TMPDIR

	Highest

	
	High speed disk for temporary job
results





	4T/-

	at job end







	$HOME is appropriate for codes and libraries which are small and read
once, as well as the experimental results that would be needed at a later
time (e.g. the weights of a network referenced in a paper).


	projects can be used for collaborative projects. It aims to ease the
sharing of data between users working on a long-term project. It’s possible
to request a bigger quota if the project requires it.


	datasets contains curated datasets to the benefit of the Mila community.
To request the addition of a dataset or a preprocessed dataset you think
could benefit the research of others, you can fill this form [https://forms.gle/vDVwD2rZBmYHENgZA].


	data1 should only contain compressed datasets. Now deprecated and
replaced by the datasets space.


	miniscratch can be used to store processed datasets, work in progress
datasets or temporary job results. Its blocksize is optimized for small files
which minimizes the performance hit of working on extracted datasets. It
supports ACL which can be used to share data between users. This space is
cleared weekly and files older then 90 days will be deleted.


	$SLURM_TMPDIR points to the local disk of the node on which a job is
running. It should be used to copy the data on the node at the beginning of
the job and write intermediate checkpoints. This folder is cleared after each
job.





Note

Auto-cleanup is applied on files not read or modified during the
specified period




Warning

Currently there are no backup system in the lab. Storage local to
personal computers, Google Drive and other related solutions should be used
to backup important data









            

          

      

      

    

  

    
      
          
            
  
4. 1 Users Guide

or IDT’s list of opinionated howtos.

This section seeks to provide users of the Mila infrastructure with practical
knowledge, tips and tricks and example commands.


4.1. 1.1 Welcome to the machine; Logging in to the cluster

To access the Mila Cluster clusters, you will need an account. Please contact
Mila systems administrators if you don’t have it already. Our IT support service
is available here: https://it-support.mila.quebec/


4.1.1. 1.1.1 SSH Login

You can access the Mila cluster via ssh:

ssh <user>@login.server.mila.quebec -p 2222



Four login nodes are available and accessible behind a Load-Balancer. At each
connection, you will be redirected to the least loaded login-node. Each login
node can be directly accessed via: login-X.login.server.mila.quebec on port
2222.

The login nodes support the following authentication mechanisms:
publickey,keyboard-interactive.  If you would like to set an entry in your
.ssh/config file, please use the following recommendation:

Host HOSTALIAS
    User YOUR-USERNAME
    Hostname login.server.mila.quebec
    PreferredAuthentications publickey,keyboard-interactive
    Port 2222
    ServerAliveInterval 120
    ServerAliveCountMax 5





The RSA, DSA and ECDSA fingerprints for Mila’s login nodes are:

SHA256:baEGIa311fhnxBWsIZJ/zYhq2WfCttwyHRKzAb8zlp8 (ECDSA)
SHA256:XvukABPjV75guEgJX1rNxlDlaEg+IqQzUnPiGJ4VRMM (DSA)
SHA256:Xr0/JqV/+5DNguPfiN5hb8rSG+nBAcfVCJoSyrR0W0o (RSA)
SHA256:gfXZzaPiaYHcrPqzHvBi6v+BWRS/lXOS/zAjOKeoBJg (ED25519)










4.2. 1.2 Running your code


4.2.1. 1.2.1 SLURM commands guide


4.2.1.1. 1.2.1.1 Basic Usage

The SLURM documentation [https://slurm.schedmd.com/documentation.html]
provides extensive information on the available commands to query the cluster
status or submit jobs.

Below are some basic examples of how to use SLURM.




4.2.1.2. 1.2.1.2 Submitting jobs


4.2.1.2.1. 1.2.1.2.1 Batch job

In order to submit a batch job, you have to create a script containing the main
command(s) you would like to execute on the allocated resources/nodes.

 1#!/bin/bash
 2#SBATCH --job-name=test
 3#SBATCH --output=job_output.txt
 4#SBATCH --error=job_error.txt
 5#SBATCH --ntasks=1
 6#SBATCH --time=10:00
 7#SBATCH --mem=100Gb
 8
 9module load python/3.5
10python my_script.py





Your job script is then submitted to SLURM with sbatch (ref. [https://slurm.schedmd.com/sbatch.html])

sbatch job_script
batch: Submitted batch job 4323674



The working directory of the job will be the one where your executed sbatch.


Tip

Slurm directives can be specified on the command line alongside sbatch or
inside the job script with a line starting with #SBATCH.






4.2.1.2.2. 1.2.1.2.2 Interactive job

Workload managers usually run batch jobs to avoid having to watch its
progression and let the scheduler run it as soon as resources are available. If
you want to get access to a shell while leveraging cluster resources, you can
submit an interactive jobs where the main executable is a shell with the
srun/salloc (srun [https://slurm.schedmd.com/srun.html]/salloc [https://slurm.schedmd.com/salloc.html]) commands

salloc



will start an interactive job on the first node available with the default
resources set in SLURM (1 task/1 CPU).  srun accepts the same arguments as
sbatch with the exception that the environment is not passed.


Tip

To pass your current environment to an interactive job, add
--preserve-env to srun.



salloc can also be used and is mostly a wrapper around srun if provided
without more info but it gives more flexibility if for example you want to get
an allocation on multiple nodes.






4.2.1.3. 1.2.1.3 Job submission arguments

In order to accurately select the resources for your job, several arguments are
available. The most important ones are:







	Argument

	Description





	-n, –ntasks=<number>

	The number of task in your script, usually =1



	-c, –cpus-per-task=<ncpus>

	The number of cores for each task



	-t, –time=<time>

	Time requested for your job



	–mem=<size[units]>

	Memory requested for all your tasks



	–gres=<list>

	Select generic resources such as GPUs for your job: --gres=gpu:GPU_MODEL







Tip

Always consider requesting the adequate amount of resources to improve the
scheduling of your job (small jobs always run first).






4.2.1.4. 1.2.1.4 Checking job status

To display jobs currently in queue, use squeue and to get only your jobs type

squeue -u $USER
OBID   USER          NAME    ST  START_TIME         TIME NODES CPUS TRES_PER_NMIN_MEM NODELIST (REASON) COMMENT
33     my_username   myjob   R   2019-03-28T18:33   0:50     1    2        N/A  7000M c1-8g-tiny1 (None) (null)






4.2.1.5. 1.2.1.5 Removing a job

To cancel your job simply use scancel

scancel 4323674








4.2.2. 1.2.2 Partitioning

Since we don’t have many GPUs on the cluster, resources must be shared as fairly
as possible.  The --partition=/-p flag of SLURM allows you to set the
priority you need for a job.  Each job assigned with a priority can preempt jobs
with a lower priority: unkillable > main > long. Once preempted, your job is
killed without notice and is automatically re-queued on the same partition until
resources are available. (To leverage a different preemption mechanism, see the
Handling preemption)









	Flag

	Max Resource Usage

	Max Time

	Note





	–partition=unkillable

	1 GPU, 6 CPUs, mem=32G

	2 days

	


	–partition=main

	2 GPUs, 8 CPUs, mem=48G

	2 days

	


	–partition=long

	no limit of resources

	7 days

	





For instance, to request an unkillable job with 1 GPU, 4 CPUs, 10G of RAM and
12h of computation do:

sbatch --gres=gpu:1 -c 4 --mem=10G -t 12:00:00 --partition=unkillable <job.sh>



You can also make it an interactive job using salloc:

salloc --gres=gpu:1 -c 4 --mem=10G -t 12:00:00 --partition=unkillable



The Mila cluster has many different types of nodes/GPUs. To request a specific
type of node/GPU, you can add specific feature requirements to your job
submission command.

To access those special nodes you need to request them explicitly by adding the
flag --constraint=<name>.  The full list of nodes in the Mila Cluster can be
accessed Node profile description.

Example:

To request a Power9 machine

sbatch -c 4 --constraint=power9



To request a machine with 2 GPUs using NVLink, you can use

sbatch -c 4 --gres=gpu:2 --constraint=nvlink









	Feature

	Particularities





	x86_64 (Default)

	Regular nodes



	Power9

	Power9 CPUs (incompatible with x86_64 software)



	12GB/16GB/24GB/32GB/48GB

	Request a specific amount of GPU memory



	maxwell/pascal/volta/tesla/turing/kepler

	Request a specific GPU architecture



	nvlink

	Machine with GPUs using the NVLink technology







Note

You don’t need to specify x86_64 when you add a constraint as it is added
by default ( nvlink -> x86_64&nvlink )




4.2.2.1. 1.2.2.1 Information on partitions/nodes

sinfo (ref. [https://slurm.schedmd.com/sinfo.html]) provides most of the
information about available nodes and partitions/queues to submit jobs to.

Partitions are a group of nodes usually sharing similar features. On a
partition, some job limits can be applied which will override those asked for a
job (i.e. max time, max CPUs, etc…)

To display available partitions, simply use

sinfo
ARTITION AVAIL TIMELIMIT NODES STATE  NODELIST
atch     up     infinite     2 alloc  node[1,3,5-9]
atch     up     infinite     6 idle   node[10-15]
pu       up     infinite     6 idle   cpu_node[1-15]
pu       up     infinite     6 idle   gpu_node[1-15]



To display available nodes and their status, you can use

sinfo -N -l
ODELIST    NODES PARTITION STATE  CPUS MEMORY TMP_DISK WEIGHT FEATURES REASON
ode[1,3,5-9]   2 batch     allocated 2    246    16000     0  (null)   (null)
ode[2,4]       2 batch     drain     2    246    16000     0  (null)   (null)
ode[10-15]     6 batch     idle      2    246    16000     0  (null)   (null)
..



and to get statistics on a job running or terminated, use sacct with some of
the fields you want to display

sacct --format=User,JobID,Jobname,partition,state,time,start,end,elapsed,nnodes,ncpus,nodelist,workdir -u username
User        JobID    JobName  Partition      State  Timelimit               Start                 End    Elapsed   NNodes      NCPUS        NodeList              WorkDir
-------- ------------ ---------- ---------- ---------- ---------- ------------------- ------------------- ---------- -------- ---------- --------------- --------------------
sername 2398         run_extra+ azureComp+    RUNNING 130-05:00+ 2019-03-27T18:33:43             Unknown 1-01:07:54        1         16 node9         /home/mila/username+
sername 2399         run_extra+ azureComp+    RUNNING 130-05:00+ 2019-03-26T08:51:38             Unknown 2-10:49:59        1         16 node9         /home/mila/username+



or to get the list of all your previous jobs, use the --start=#### flag

sacct -u my_username --start=20190101



scontrol (ref. [https://slurm.schedmd.com/scontrol.html]) can be used to
provide specific information on a job (currently running or recently terminated)

scontrol show job 43123
obId=43123 JobName=python_script.py
serId=my_username(1500000111) GroupId=student(1500000000) MCS_label=N/A
riority=645895 Nice=0 Account=my_username QOS=normal
obState=RUNNING Reason=None Dependency=(null)
equeue=1 Restarts=3 BatchFlag=1 Reboot=0 ExitCode=0:0
unTime=2-10:41:57 TimeLimit=130-05:00:00 TimeMin=N/A
ubmitTime=2019-03-26T08:47:17 EligibleTime=2019-03-26T08:49:18
ccrueTime=2019-03-26T08:49:18
tartTime=2019-03-26T08:51:38 EndTime=2019-08-03T13:51:38 Deadline=N/A
reemptTime=None SuspendTime=None SecsPreSuspend=0
astSchedEval=2019-03-26T08:49:18
artition=slurm_partition AllocNode:Sid=login-node-1:14586
eqNodeList=(null) ExcNodeList=(null)
odeList=node2
atchHost=node2
umNodes=1 NumCPUs=16 NumTasks=1 CPUs/Task=16 ReqB:S:C:T=0:0:*:*
RES=cpu=16,mem=32000M,node=1,billing=3
ocks/Node=* NtasksPerN:B:S:C=1:0:*:* CoreSpec=*
inCPUsNode=16 MinMemoryNode=32000M MinTmpDiskNode=0
eatures=(null) DelayBoot=00:00:00
verSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
orkDir=/home/mila/my_username
tdErr=/home/mila/my_username/slurm-43123.out
tdIn=/dev/null
tdOut=/home/mila/my_username/slurm-43123.out
ower=



or more info on a node and its resources

scontrol show node node9
odeName=node9 Arch=x86_64 CoresPerSocket=4
PUAlloc=16 CPUTot=16 CPULoad=1.38
vailableFeatures=(null)
ctiveFeatures=(null)
res=(null)
odeAddr=10.252.232.4 NodeHostName=mila20684000000 Port=0 Version=18.08
S=Linux 4.15.0-1036 #38-Ubuntu SMP Fri Dec 7 02:47:47 UTC 2018
ealMemory=32000 AllocMem=32000 FreeMem=23262 Sockets=2 Boards=1
tate=ALLOCATED+CLOUD ThreadsPerCore=2 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
artitions=slurm_partition
ootTime=2019-03-26T08:50:01 SlurmdStartTime=2019-03-26T08:51:15
fgTRES=cpu=16,mem=32000M,billing=3
llocTRES=cpu=16,mem=32000M
apWatts=n/a
urrentWatts=0 LowestJoules=0 ConsumedJoules=0
xtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s








4.2.3. 1.2.3 Useful Commands







	Command

	Description





	salloc

	Get an interactive job and give you a shell. (ssh like) CPU only



	salloc –gres=gpu -c 2 –mem=12000

	Get an interactive job with one GPU, 2 CPUs and 12000 MB RAM



	sbatch

	start a batch job (same options as salloc)



	sattach –pty <jobid>.0

	Re-attach a dropped interactive job



	sinfo

	status of all nodes



	sinfo -Ogres:27,nodelist,features -tidle,mix,alloc

	List GPU type and FEATURES that you can request



	savail

	(Custom) List available gpu



	scancel <jobid>

	Cancel a job



	squeue

	summary status of all active jobs



	squeue -u $USER

	summary status of all YOUR active jobs



	squeue -j <jobid>

	summary status of a specific job



	squeue -Ojobid,name,username,partition,
state,timeused,nodelist,gres,tres

	status of all jobs including requested
resources (see the SLURM squeue doc for all output options)



	scontrol show job <jobid>

	Detailed status of a running job



	sacct -j <job_id> -o NodeList

	Get the node where a finished job ran



	sacct -u $USER -S <start_time> -E <stop_time>

	Find info about old jobs



	sacct -oJobID,JobName,User,Partition,Node,State

	List of current and recent jobs









4.2.4. 1.2.4 Special GPU requirements

Specific GPU architecture and memory can be easily requested through the
--gres flag by using either


	--gres=gpu:architecture:memory:number


	--gres=gpu:architecture:number


	--gres=gpu:memory:number


	--gres=gpu:model:number




Example:

To request a Tesla GPU with at least 16GB of memory use

sbatch -c 4 --gres=gpu:tesla:16gb:1



The full list of GPU and their features can be accessed here.




4.2.5. 1.2.5 CPU-only jobs

Since the priority is given to the usage of GPUs, CPU-only jobs have a low
priority and can only consume 4 cpus maximum per node.  The partition for
CPU-only jobs is named cpu_jobs and you can request it with -p cpu_jobs
or if you don’t specify any GPU, you will be automatically rerouted to this
partition.




4.2.6. 1.2.6 Example script

Here is a sbatch script that follows good practices on the Mila cluster:

 1#!/bin/bash
 2#SBATCH --partition=unkillable                      # Ask for unkillable job
 3#SBATCH --cpus-per-task=2                     # Ask for 2 CPUs
 4#SBATCH --gres=gpu:1                          # Ask for 1 GPU
 5#SBATCH --mem=10G                             # Ask for 10 GB of RAM
 6#SBATCH --time=3:00:00                        # The job will run for 3 hours
 7#SBATCH -o /network/tmp1/<user>/slurm-%j.out  # Write the log on tmp1
 8
 9# 1. Load the required modules
10module --quiet load anaconda/3
11
12# 2. Load your environment
13conda activate <env_name>
14
15# 3. Copy your dataset on the compute node
16cp /network/data/<dataset> $SLURM_TMPDIR
17
18# 4. Launch your job, tell it to save the model in $SLURM_TMPDIR
19#    and look for the dataset into $SLURM_TMPDIR
20python main.py --path $SLURM_TMPDIR --data_path $SLURM_TMPDIR
21
22# 5. Copy whatever you want to save on $SCRATCH
23cp $SLURM_TMPDIR/<to_save> /network/tmp1/<user>/










4.3. 1.3 Portability concerns and solutions


4.3.1. 1.3.1 Creating a list of your software’s dependencies

TODO




4.3.2. 1.3.2 Managing your envs


4.3.2.1. 1.3.2.1 Pip/Virtualenv

Pip is the preferred package manager for Python and each cluster provides
several Python versions through the associated module which comes with pip. In
order to install new packages, you will first have to create a personal space
for them to be stored.  The preferred solution (as it is the preferred solution
on Compute Canada clusters) is to use virtual environments [https://virtualenv.pypa.io/en/stable/].

First, load the python module you want to use:

module load python/3.6

